具有输入饱和度和输出约束的自动载波着陆系统的复合自适应神经控制

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of The Franklin Institute-engineering and Applied Mathematics Pub Date : 2024-08-28 DOI:10.1016/j.jfranklin.2024.107218
{"title":"具有输入饱和度和输出约束的自动载波着陆系统的复合自适应神经控制","authors":"","doi":"10.1016/j.jfranklin.2024.107218","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the automatic carrier landing control problem in the presence of model uncertainty, airwake disturbances, input saturation, and output constraints. Considering the performance requirements of the carrier-based aircraft, a composite adaptive neural controller is proposed based on the time-varying barrier Lyapunov function and backstepping control techniques. The radial basis function neural network is used to approximate the model uncertainty, where the neural network weight update law incorporating prediction and tracking errors further improves the convergence rate of the neural network and mitigates high-frequency oscillations. Furthermore, an adaptive disturbance compensation model is established to mitigate the adverse effects of airwake disturbances and estimation errors in the neural network. Based on the Lyapunov stability theory, it is proven that the proposed controller maintains the aircraft trajectory within the prescribed constraints and also ensures that all signals in the closed-loop control system are semiglobally uniformly ultimately bounded. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed composite adaptive neural control method.</p></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite adaptive neural control for automatic carrier landing system with input saturation and output constraints\",\"authors\":\"\",\"doi\":\"10.1016/j.jfranklin.2024.107218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the automatic carrier landing control problem in the presence of model uncertainty, airwake disturbances, input saturation, and output constraints. Considering the performance requirements of the carrier-based aircraft, a composite adaptive neural controller is proposed based on the time-varying barrier Lyapunov function and backstepping control techniques. The radial basis function neural network is used to approximate the model uncertainty, where the neural network weight update law incorporating prediction and tracking errors further improves the convergence rate of the neural network and mitigates high-frequency oscillations. Furthermore, an adaptive disturbance compensation model is established to mitigate the adverse effects of airwake disturbances and estimation errors in the neural network. Based on the Lyapunov stability theory, it is proven that the proposed controller maintains the aircraft trajectory within the prescribed constraints and also ensures that all signals in the closed-loop control system are semiglobally uniformly ultimately bounded. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed composite adaptive neural control method.</p></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224006392\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224006392","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了存在模型不确定性、空中晃动干扰、输入饱和以及输出约束条件下的航母自动着陆控制问题。考虑到舰载机的性能要求,本文提出了一种基于时变障壁 Lyapunov 函数和后步法控制技术的复合自适应神经控制器。采用径向基函数神经网络来近似模型的不确定性,其中包含预测和跟踪误差的神经网络权值更新法则进一步提高了神经网络的收敛速度,并缓解了高频振荡。此外,还建立了一个自适应扰动补偿模型,以减轻空摇扰动和估计误差对神经网络的不利影响。基于 Lyapunov 稳定性理论,证明了所提出的控制器能在规定的约束条件下保持飞机轨迹,并确保闭环控制系统中的所有信号都是半全局均匀最终约束的。最后,通过比较仿真证明了所提出的复合自适应神经控制方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite adaptive neural control for automatic carrier landing system with input saturation and output constraints

This paper investigates the automatic carrier landing control problem in the presence of model uncertainty, airwake disturbances, input saturation, and output constraints. Considering the performance requirements of the carrier-based aircraft, a composite adaptive neural controller is proposed based on the time-varying barrier Lyapunov function and backstepping control techniques. The radial basis function neural network is used to approximate the model uncertainty, where the neural network weight update law incorporating prediction and tracking errors further improves the convergence rate of the neural network and mitigates high-frequency oscillations. Furthermore, an adaptive disturbance compensation model is established to mitigate the adverse effects of airwake disturbances and estimation errors in the neural network. Based on the Lyapunov stability theory, it is proven that the proposed controller maintains the aircraft trajectory within the prescribed constraints and also ensures that all signals in the closed-loop control system are semiglobally uniformly ultimately bounded. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed composite adaptive neural control method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
期刊最新文献
A multidimensional image encryption and decryption technology Dynamic event-triggered consensus for stochastic delay multi-agent systems under directed topology Fixed-time adaptive control of quadrotor suspension system with unknown payload mass Stability analysis of quasilinear systems on time scale based on a new estimation of the upper bound of the time scale matrix exponential function Adaptive robust integrated guidance and control for thrust-vector-controlled aircraft by solving LQR online
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1