{"title":"一种来自隐球菌 WM276 的羧甲基纤维素酶:表达、纯化和表征","authors":"Dylan Moodley, Angela Botes","doi":"10.1016/j.pep.2024.106594","DOIUrl":null,"url":null,"abstract":"<div><p><em>Cryptococcus gattii</em> and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from <em>C. gattii</em> (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in <em>Escherichia coli</em> T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na<sup>+</sup>. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.</p></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"225 ","pages":"Article 106594"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046592824001669/pdfft?md5=0ce3a90264b1d65ac8b9e512dd0583ef&pid=1-s2.0-S1046592824001669-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A carboxymethyl cellulase from the yeast Cryptococcus gattii WM276: Expression, purification and characterisation\",\"authors\":\"Dylan Moodley, Angela Botes\",\"doi\":\"10.1016/j.pep.2024.106594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Cryptococcus gattii</em> and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from <em>C. gattii</em> (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in <em>Escherichia coli</em> T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na<sup>+</sup>. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.</p></div>\",\"PeriodicalId\":20757,\"journal\":{\"name\":\"Protein expression and purification\",\"volume\":\"225 \",\"pages\":\"Article 106594\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1046592824001669/pdfft?md5=0ce3a90264b1d65ac8b9e512dd0583ef&pid=1-s2.0-S1046592824001669-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein expression and purification\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046592824001669\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824001669","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A carboxymethyl cellulase from the yeast Cryptococcus gattii WM276: Expression, purification and characterisation
Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.