用于 RGB-D 突出物体检测的渐进式跨层融合网络

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-08-24 DOI:10.1016/j.jvcir.2024.104268
Jianbao Li, Chen Pan, Yilin Zheng, Dongping Zhang
{"title":"用于 RGB-D 突出物体检测的渐进式跨层融合网络","authors":"Jianbao Li,&nbsp;Chen Pan,&nbsp;Yilin Zheng,&nbsp;Dongping Zhang","doi":"10.1016/j.jvcir.2024.104268","DOIUrl":null,"url":null,"abstract":"<div><p>Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and low-level structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi-scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104268"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive cross-level fusion network for RGB-D salient object detection\",\"authors\":\"Jianbao Li,&nbsp;Chen Pan,&nbsp;Yilin Zheng,&nbsp;Dongping Zhang\",\"doi\":\"10.1016/j.jvcir.2024.104268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and low-level structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi-scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104268\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002244\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002244","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

深度图可为突出物体检测(SOD)提供补充信息,在处理复杂场景时表现更佳。现有的 RGB-D 方法大多只利用同一层次的深度线索,很少有方法关注跨层次特征之间的信息联系。在本研究中,我们提出了一种渐进式跨层融合网络(PCF-Net)。它通过逐步探索更深层次的特征来确保跨层次特征的交叉流动,从而促进不同层次特征之间的信息交互和融合。首先,我们设计了跨层引导跨模态融合模块(CGCF),利用上层特征的空间信息抑制模态特征噪声,引导下层特征进行跨模态特征融合。其次,利用提出的语义增强模块(SEM)和局部增强模块(LEM)进一步引入更深层次的特征,增强跨模态特征的高层语义信息和低层结构信息,并利用自身模态注意力细化提高增强效果。最后,多尺度聚合解码器会挖掘多尺度空间中的增强特征信息,并有效整合跨尺度特征。在这项研究中,我们进行了大量实验,证明在六个流行的 RGB-D SOD 数据集上,所提出的 PCF-Net 优于 16 种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive cross-level fusion network for RGB-D salient object detection

Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and low-level structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi-scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1