Fanghua Xu , Xiangda Xu , Huanhuan Deng , Zhaojun Yu , Jianbiao Huang , Leihong Deng , Haichao Chao
{"title":"去泛素化酶 USP2 通过稳定 EZH2 从表观遗传学上抑制 SOX1 的表达,在推动膀胱癌进展中发挥作用","authors":"Fanghua Xu , Xiangda Xu , Huanhuan Deng , Zhaojun Yu , Jianbiao Huang , Leihong Deng , Haichao Chao","doi":"10.1016/j.tranon.2024.102104","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet.</p></div><div><h3>Methods</h3><p>Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An <em>in vivo</em> verification was conducted using a xenograft model of nude mice.</p></div><div><h3>Results</h3><p>USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.</p></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"49 ","pages":"Article 102104"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1936523324002316/pdfft?md5=ebbfc99a8a5c065a0d6f95c5e88f2de3&pid=1-s2.0-S1936523324002316-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of deubiquitinase USP2 in driving bladder cancer progression by stabilizing EZH2 to epigenetically silence SOX1 expression\",\"authors\":\"Fanghua Xu , Xiangda Xu , Huanhuan Deng , Zhaojun Yu , Jianbiao Huang , Leihong Deng , Haichao Chao\",\"doi\":\"10.1016/j.tranon.2024.102104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet.</p></div><div><h3>Methods</h3><p>Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An <em>in vivo</em> verification was conducted using a xenograft model of nude mice.</p></div><div><h3>Results</h3><p>USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.</p></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"49 \",\"pages\":\"Article 102104\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1936523324002316/pdfft?md5=ebbfc99a8a5c065a0d6f95c5e88f2de3&pid=1-s2.0-S1936523324002316-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1936523324002316\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523324002316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
The role of deubiquitinase USP2 in driving bladder cancer progression by stabilizing EZH2 to epigenetically silence SOX1 expression
Background
The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet.
Methods
Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An in vivo verification was conducted using a xenograft model of nude mice.
Results
USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified in vivo.
Conclusion
Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.