{"title":"权衡利弊下的量子谐波奥托发动机和制冷机性能分析","authors":"Kirandeep Kaur, Shishram Rebari, Varinder Singh","doi":"10.1515/jnet-2024-0034","DOIUrl":null,"url":null,"abstract":"We investigate the optimal performance of the quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator under a trade-off figure of merit for both adiabatic and nonadiabatic (sudden-switch) frequency modulations. For heat engines (refrigerators), the chosen trade-off figure of merit is an objective function defined by the product of efficiency (coefficient of performance) and work output (cooling load), thus representing a compromise between them. We obtain analytical expressions for the efficiency and coefficient of performance of the harmonic Otto cycle for the optimal performance of the thermal machine in various operational regimes. Particularly, in the sudden-switch regime, we discuss the implications of the nonadiabatic driving on the performance of the thermal machine under consideration and obtain analytic expressions for the maximum achievable efficiency and coefficient of performance of the harmonic Otto thermal machine. Particularly, we show that the quantum harmonic Otto cycle driven by sudden-switch protocol cannot work as a heat engine or refrigerator in the low-temperature limit. Finally, we show that in the high-temperature limit, the frictional effects give rise to a richer structure of the phase diagram of the harmonic Otto cycle. We identify the parametric regime for the operation of the Otto cycle as a heat engine, refrigerator, accelerator, and heater.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"5 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit\",\"authors\":\"Kirandeep Kaur, Shishram Rebari, Varinder Singh\",\"doi\":\"10.1515/jnet-2024-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the optimal performance of the quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator under a trade-off figure of merit for both adiabatic and nonadiabatic (sudden-switch) frequency modulations. For heat engines (refrigerators), the chosen trade-off figure of merit is an objective function defined by the product of efficiency (coefficient of performance) and work output (cooling load), thus representing a compromise between them. We obtain analytical expressions for the efficiency and coefficient of performance of the harmonic Otto cycle for the optimal performance of the thermal machine in various operational regimes. Particularly, in the sudden-switch regime, we discuss the implications of the nonadiabatic driving on the performance of the thermal machine under consideration and obtain analytic expressions for the maximum achievable efficiency and coefficient of performance of the harmonic Otto thermal machine. Particularly, we show that the quantum harmonic Otto cycle driven by sudden-switch protocol cannot work as a heat engine or refrigerator in the low-temperature limit. Finally, we show that in the high-temperature limit, the frictional effects give rise to a richer structure of the phase diagram of the harmonic Otto cycle. We identify the parametric regime for the operation of the Otto cycle as a heat engine, refrigerator, accelerator, and heater.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2024-0034\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit
We investigate the optimal performance of the quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator under a trade-off figure of merit for both adiabatic and nonadiabatic (sudden-switch) frequency modulations. For heat engines (refrigerators), the chosen trade-off figure of merit is an objective function defined by the product of efficiency (coefficient of performance) and work output (cooling load), thus representing a compromise between them. We obtain analytical expressions for the efficiency and coefficient of performance of the harmonic Otto cycle for the optimal performance of the thermal machine in various operational regimes. Particularly, in the sudden-switch regime, we discuss the implications of the nonadiabatic driving on the performance of the thermal machine under consideration and obtain analytic expressions for the maximum achievable efficiency and coefficient of performance of the harmonic Otto thermal machine. Particularly, we show that the quantum harmonic Otto cycle driven by sudden-switch protocol cannot work as a heat engine or refrigerator in the low-temperature limit. Finally, we show that in the high-temperature limit, the frictional effects give rise to a richer structure of the phase diagram of the harmonic Otto cycle. We identify the parametric regime for the operation of the Otto cycle as a heat engine, refrigerator, accelerator, and heater.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.