化逆境为优势:利用信道预测神经网络的不确定性进行稳健的 MCS 选择

IF 4.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Wireless Communications Letters Pub Date : 2024-08-28 DOI:10.1109/LWC.2024.3393939
Yangyang Li;Yuhua Xu;Guoxin Li;Ximing Wang;Yifan Xu;Songyi Liu;Lei Yue
{"title":"化逆境为优势:利用信道预测神经网络的不确定性进行稳健的 MCS 选择","authors":"Yangyang Li;Yuhua Xu;Guoxin Li;Ximing Wang;Yifan Xu;Songyi Liu;Lei Yue","doi":"10.1109/LWC.2024.3393939","DOIUrl":null,"url":null,"abstract":"In wireless communication systems, the selection of suitable modulation and/or coding schemes (MCS) based on predicted channel quality is vital. However, the dynamic nature of wireless channels poses a challenge, leading to persistent inaccuracies in prediction. This letter tackles this challenge by introducing a robust communication approach for MCS selection, rooted in new paradigm of prediction uncertainty quantification. The proposed method involves establishing an uncertainty pool to quantify potential prediction errors. This approach enables the assessment of the accuracy of predictions, facilitating the informed selection of MCSs. Through simulations utilizing real-world data, the integration of our proposed design into various channel prediction neural networks enhances the performance of MCS selection. The simulations show our design enhances communication robustness without compromising throughput. The enhancement of up to 53% in communication success rates, with an average improvement of around 15%.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"13 10","pages":"2632-2636"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turning Adversity Into Advantage: Robust MCS Selection Utilizing the Uncertainty of Channel Prediction Neural Networks\",\"authors\":\"Yangyang Li;Yuhua Xu;Guoxin Li;Ximing Wang;Yifan Xu;Songyi Liu;Lei Yue\",\"doi\":\"10.1109/LWC.2024.3393939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless communication systems, the selection of suitable modulation and/or coding schemes (MCS) based on predicted channel quality is vital. However, the dynamic nature of wireless channels poses a challenge, leading to persistent inaccuracies in prediction. This letter tackles this challenge by introducing a robust communication approach for MCS selection, rooted in new paradigm of prediction uncertainty quantification. The proposed method involves establishing an uncertainty pool to quantify potential prediction errors. This approach enables the assessment of the accuracy of predictions, facilitating the informed selection of MCSs. Through simulations utilizing real-world data, the integration of our proposed design into various channel prediction neural networks enhances the performance of MCS selection. The simulations show our design enhances communication robustness without compromising throughput. The enhancement of up to 53% in communication success rates, with an average improvement of around 15%.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"13 10\",\"pages\":\"2632-2636\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654736/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654736/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在无线通信系统中,根据预测的信道质量选择合适的调制和/或编码方案(MCS)至关重要。然而,无线信道的动态特性带来了挑战,导致预测持续不准确。为应对这一挑战,这封信引入了一种用于 MCS 选择的稳健通信方法,该方法植根于预测不确定性量化的新范式。所提出的方法包括建立一个不确定性池来量化潜在的预测误差。通过这种方法,可以评估预测的准确性,便于在知情的情况下选择 MCS。通过利用真实世界数据进行模拟,将我们提出的设计集成到各种信道预测神经网络中,可提高 MCS 选择的性能。模拟结果表明,我们的设计在不影响吞吐量的情况下增强了通信鲁棒性。通信成功率最多可提高 53%,平均提高约 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turning Adversity Into Advantage: Robust MCS Selection Utilizing the Uncertainty of Channel Prediction Neural Networks
In wireless communication systems, the selection of suitable modulation and/or coding schemes (MCS) based on predicted channel quality is vital. However, the dynamic nature of wireless channels poses a challenge, leading to persistent inaccuracies in prediction. This letter tackles this challenge by introducing a robust communication approach for MCS selection, rooted in new paradigm of prediction uncertainty quantification. The proposed method involves establishing an uncertainty pool to quantify potential prediction errors. This approach enables the assessment of the accuracy of predictions, facilitating the informed selection of MCSs. Through simulations utilizing real-world data, the integration of our proposed design into various channel prediction neural networks enhances the performance of MCS selection. The simulations show our design enhances communication robustness without compromising throughput. The enhancement of up to 53% in communication success rates, with an average improvement of around 15%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
期刊最新文献
Feedback Design With VQ-VAE for Robust Precoding in Multi-User FDD Systems Robotic Sensor Network: Achieving Mutual Communication Control Assistance With Fast Cross-Layer Optimization EMR Safety in Multiple Wireless Chargers Powered IoT Networks OFDM-Based In-Band Full-Duplex ISAC Systems Peak Downlink Rate Maximization and Joint Beamforming Optimization for RIS-Aided THz OFDMA UM-MIMO Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1