学习量子计算机的能力

Daniel Hothem;Kevin Young;Tommie Catanach;Timothy Proctor
{"title":"学习量子计算机的能力","authors":"Daniel Hothem;Kevin Young;Tommie Catanach;Timothy Proctor","doi":"10.1109/TQE.2024.3430215","DOIUrl":null,"url":null,"abstract":"Accurately predicting a quantum computer's capability—which circuits it can run and how well it can run them—is a foundational goal of quantum characterization and benchmarking. As modern quantum computers become increasingly hard to simulate, we must develop accurate and scalable predictive capability models to help researchers and stakeholders decide which quantum computers to build and use. In this work, we propose a hardware-agnostic method to efficiently construct scalable predictive models of a quantum computer's capability for almost any class of circuits and demonstrate our method using convolutional neural networks (CNNs). Our CNN-based approach works by efficiently representing a circuit as a 3-D tensor and then using a CNN to predict its success rate. Our CNN capability models obtain approximately a 1% average absolute prediction error when modeling processors experiencing both Markovian and non-Markovian stochastic Pauli errors. We also apply our CNNs to model the capabilities of cloud-access quantum computing systems, obtaining moderate prediction accuracy (average absolute error around 2–5%), and we highlight the challenges to building better neural network capability models.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10603420","citationCount":"0","resultStr":"{\"title\":\"Learning a Quantum Computer's Capability\",\"authors\":\"Daniel Hothem;Kevin Young;Tommie Catanach;Timothy Proctor\",\"doi\":\"10.1109/TQE.2024.3430215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting a quantum computer's capability—which circuits it can run and how well it can run them—is a foundational goal of quantum characterization and benchmarking. As modern quantum computers become increasingly hard to simulate, we must develop accurate and scalable predictive capability models to help researchers and stakeholders decide which quantum computers to build and use. In this work, we propose a hardware-agnostic method to efficiently construct scalable predictive models of a quantum computer's capability for almost any class of circuits and demonstrate our method using convolutional neural networks (CNNs). Our CNN-based approach works by efficiently representing a circuit as a 3-D tensor and then using a CNN to predict its success rate. Our CNN capability models obtain approximately a 1% average absolute prediction error when modeling processors experiencing both Markovian and non-Markovian stochastic Pauli errors. We also apply our CNNs to model the capabilities of cloud-access quantum computing systems, obtaining moderate prediction accuracy (average absolute error around 2–5%), and we highlight the challenges to building better neural network capability models.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10603420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10603420/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10603420/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测量子计算机的能力--它能运行哪些电路以及运行这些电路的能力如何--是量子特征描述和基准测试的基本目标。随着现代量子计算机越来越难以模拟,我们必须开发准确且可扩展的预测能力模型,以帮助研究人员和利益相关者决定构建和使用哪种量子计算机。在这项工作中,我们提出了一种与硬件无关的方法,可以高效地为几乎任何一类电路构建可扩展的量子计算机能力预测模型,并使用卷积神经网络(CNN)演示了我们的方法。我们基于 CNN 的方法是将电路有效地表示为三维张量,然后使用 CNN 预测其成功率。在对出现马尔可夫和非马尔可夫随机保利误差的处理器进行建模时,我们的 CNN 能力模型可获得约 1% 的平均绝对预测误差。我们还应用我们的 CNN 对云访问量子计算系统的能力进行建模,获得了中等水平的预测精度(平均绝对误差约为 2-5%),并强调了建立更好的神经网络能力模型所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning a Quantum Computer's Capability
Accurately predicting a quantum computer's capability—which circuits it can run and how well it can run them—is a foundational goal of quantum characterization and benchmarking. As modern quantum computers become increasingly hard to simulate, we must develop accurate and scalable predictive capability models to help researchers and stakeholders decide which quantum computers to build and use. In this work, we propose a hardware-agnostic method to efficiently construct scalable predictive models of a quantum computer's capability for almost any class of circuits and demonstrate our method using convolutional neural networks (CNNs). Our CNN-based approach works by efficiently representing a circuit as a 3-D tensor and then using a CNN to predict its success rate. Our CNN capability models obtain approximately a 1% average absolute prediction error when modeling processors experiencing both Markovian and non-Markovian stochastic Pauli errors. We also apply our CNNs to model the capabilities of cloud-access quantum computing systems, obtaining moderate prediction accuracy (average absolute error around 2–5%), and we highlight the challenges to building better neural network capability models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1