遗传算法优化二氧化碳浓度观测传感器的布置

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-07-09 DOI:10.23919/comex.2024XBL0103
Tomoaki Matsuda;Shusuke Narieda
{"title":"遗传算法优化二氧化碳浓度观测传感器的布置","authors":"Tomoaki Matsuda;Shusuke Narieda","doi":"10.23919/comex.2024XBL0103","DOIUrl":null,"url":null,"abstract":"In our previous studies, we introduced a method for determining the optimal sensor placement of wireless sensor networks for monitoring indoor carbon dioxide (CO2) concentrations. This method, based on brute force, has proven to be accurate and reliable. However, the computational complexity increases exponentially with an increase in the number of sensors. Therefore, this study proposes a novel approach for optimal sensor node placement based on a genetic algorithm (GA) that offers a more efficient alternative to the brute force method. By utilizing the GA, we achieved optimal sensor placement with reduced computational complexity. To validate the effectiveness of our GA based method, we conducted numerical experiments using observed CO2 concentration. The results demonstrate that our proposed approach not only achieves optimal sensor placement but also maintains the accuracy of the observations.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 9","pages":"393-396"},"PeriodicalIF":0.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591722","citationCount":"0","resultStr":"{\"title\":\"Genetic Algorithm Optimization of Sensor Placement for CO2 Concentration Observation\",\"authors\":\"Tomoaki Matsuda;Shusuke Narieda\",\"doi\":\"10.23919/comex.2024XBL0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous studies, we introduced a method for determining the optimal sensor placement of wireless sensor networks for monitoring indoor carbon dioxide (CO2) concentrations. This method, based on brute force, has proven to be accurate and reliable. However, the computational complexity increases exponentially with an increase in the number of sensors. Therefore, this study proposes a novel approach for optimal sensor node placement based on a genetic algorithm (GA) that offers a more efficient alternative to the brute force method. By utilizing the GA, we achieved optimal sensor placement with reduced computational complexity. To validate the effectiveness of our GA based method, we conducted numerical experiments using observed CO2 concentration. The results demonstrate that our proposed approach not only achieves optimal sensor placement but also maintains the accuracy of the observations.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 9\",\"pages\":\"393-396\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591722\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10591722/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10591722/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在之前的研究中,我们介绍了一种确定无线传感器网络最佳传感器位置的方法,用于监测室内二氧化碳(CO2)浓度。事实证明,这种基于蛮力的方法准确可靠。然而,随着传感器数量的增加,计算复杂度也呈指数增长。因此,本研究提出了一种基于遗传算法(GA)的优化传感器节点布置的新方法,为蛮力法提供了更有效的替代方案。通过利用遗传算法,我们在降低计算复杂度的同时实现了传感器的最佳布置。为了验证基于 GA 的方法的有效性,我们使用观测到的二氧化碳浓度进行了数值实验。结果表明,我们提出的方法不仅实现了传感器的最佳布置,还保持了观测结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Algorithm Optimization of Sensor Placement for CO2 Concentration Observation
In our previous studies, we introduced a method for determining the optimal sensor placement of wireless sensor networks for monitoring indoor carbon dioxide (CO2) concentrations. This method, based on brute force, has proven to be accurate and reliable. However, the computational complexity increases exponentially with an increase in the number of sensors. Therefore, this study proposes a novel approach for optimal sensor node placement based on a genetic algorithm (GA) that offers a more efficient alternative to the brute force method. By utilizing the GA, we achieved optimal sensor placement with reduced computational complexity. To validate the effectiveness of our GA based method, we conducted numerical experiments using observed CO2 concentration. The results demonstrate that our proposed approach not only achieves optimal sensor placement but also maintains the accuracy of the observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Preamble Detection Method for RSS Data Synchronization in WLAN Monitoring Versatile Two-Mode ODFT-Based Labeling in Mode-Multiplexed Optical Packet Switching A Measurement Method Using Packets for Measuring the Processing Time of Edge and Cloud Applications Circularly Polarized Cavity-Backed Antenna with Variable Magneto-Electric Crossed-Dipole Structure Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1