MMFSyn:预测抗癌药物协同作用的多模态深度学习模型。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-08-22 DOI:10.3390/biom14081039
Tao Yang, Haohao Li, Yanlei Kang, Zhong Li
{"title":"MMFSyn:预测抗癌药物协同作用的多模态深度学习模型。","authors":"Tao Yang, Haohao Li, Yanlei Kang, Zhong Li","doi":"10.3390/biom14081039","DOIUrl":null,"url":null,"abstract":"<p><p>Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships between drugs remains a highly challenging task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data combined with cell line features. Firstly, to ensure the full expression of drug molecular features, multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams, and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied to extract the drug feature. Then, it selects appropriate omics features from gene expression and mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features are combined to predict the synergistic anti-cancer drug combination effect. The experimental results verify that MMFSyn has significant advantages in performance compared to other popular methods, with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates that MMFSyn can better capture the complex relationship between multimodal drug combinations and omics data, thereby improving the synergistic drug combination prediction.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352627/pdf/","citationCount":"0","resultStr":"{\"title\":\"MMFSyn: A Multimodal Deep Learning Model for Predicting Anticancer Synergistic Drug Combination Effect.\",\"authors\":\"Tao Yang, Haohao Li, Yanlei Kang, Zhong Li\",\"doi\":\"10.3390/biom14081039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships between drugs remains a highly challenging task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data combined with cell line features. Firstly, to ensure the full expression of drug molecular features, multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams, and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied to extract the drug feature. Then, it selects appropriate omics features from gene expression and mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features are combined to predict the synergistic anti-cancer drug combination effect. The experimental results verify that MMFSyn has significant advantages in performance compared to other popular methods, with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates that MMFSyn can better capture the complex relationship between multimodal drug combinations and omics data, thereby improving the synergistic drug combination prediction.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14081039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14081039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

联合疗法旨在协同提高疗效或减少毒副作用,已被广泛应用于临床实践。然而,随着联合用药种类的迅速增加,识别药物之间的协同关系仍然是一项极具挑战性的任务。本文提出了一种基于多模态药物数据结合细胞系特征的新型深度学习模型 MMFSyn。首先,为确保药物分子特征的充分表达,利用SMILES提取药物的多种模态数据,包括摩根指纹、原子序列、分子图和原子点云数据。其次,针对不同模态数据,综合应用 Bi-LSTM、gMLP、多头注意机制和多尺度 GCN 等方法提取药物特征。然后,从癌症细胞系的基因表达和突变全息数据中选择合适的全息特征,构建癌症细胞系特征。最后,结合这些特征来预测抗癌药物的协同组合效果。实验结果验证了 MMFSyn 与其他流行方法相比具有显著的性能优势,其均方根误差为 13.33,皮尔逊相关系数为 0.81,这表明 MMFSyn 能更好地捕捉多模式药物组合与全息数据之间的复杂关系,从而提高药物组合的协同预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MMFSyn: A Multimodal Deep Learning Model for Predicting Anticancer Synergistic Drug Combination Effect.

Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships between drugs remains a highly challenging task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data combined with cell line features. Firstly, to ensure the full expression of drug molecular features, multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams, and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied to extract the drug feature. Then, it selects appropriate omics features from gene expression and mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features are combined to predict the synergistic anti-cancer drug combination effect. The experimental results verify that MMFSyn has significant advantages in performance compared to other popular methods, with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates that MMFSyn can better capture the complex relationship between multimodal drug combinations and omics data, thereby improving the synergistic drug combination prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein Impact of Multi-Factor Features on Protein Secondary Structure Prediction Special Issue “Phytohormones 2022–2023” The Effects of Kynurenic Acid in Zebrafish Embryos and Adult Rainbow Trout Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1