大脑lncRNA-mRNA共表达调控网络与酒精使用障碍

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genomics Pub Date : 2024-09-01 DOI:10.1016/j.ygeno.2024.110928
{"title":"大脑lncRNA-mRNA共表达调控网络与酒精使用障碍","authors":"","doi":"10.1016/j.ygeno.2024.110928","DOIUrl":null,"url":null,"abstract":"<div><p>Prolonged alcohol consumption can disturb the expression of both coding and noncoding genes in the brain. These dysregulated genes may co-express in modules and interact within networks, consequently influencing the susceptibility to developing alcohol use disorder (AUD). In the present study, we performed an RNA-seq analysis of the expression of both long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 192 postmortem tissue samples collected from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control subjects of European ancestry. Applying the limma-voom method, we detected a total of 57 lncRNAs and 51 mRNAs exhibiting significant differential expression (<em>P</em><sub>adj</sub> &lt; 0.05 and fold-change ≥2) across at least one of the eight brain regions investigated. Machine learning analysis further confirmed the potential of these top genes in predicting AUD. Through Weighted Gene Co-expression Network Analysis (WGCNA), we identified distinct lncRNA-mRNA co-expression modules associated with AUD in each of the eight brain regions. Additionally, lncRNA-mRNA co-expression networks were constructed for each brain region using Cytoscape to reveal gene regulatory interactions implicated in AUD. Hub genes within these networks were found to be enriched in several key KEGG pathways, including <em>Axon Guidance</em>, <em>MAPK Signaling</em>, <em>p53 Signaling</em>, <em>Adherens Junction</em>, and <em>Neurodegeneration</em>. Our results underscore the significance of networks involving AUD-associated lncRNAs and mRNAs in modulating neuroplasticity in response to alcohol exposure. Further elucidating these molecular mechanisms holds promise for the development of targeted therapeutic interventions for AUD.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001496/pdfft?md5=985fb9f6d87ace43e4fb38797a1213af&pid=1-s2.0-S0888754324001496-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain lncRNA-mRNA co-expression regulatory networks and alcohol use disorder\",\"authors\":\"\",\"doi\":\"10.1016/j.ygeno.2024.110928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prolonged alcohol consumption can disturb the expression of both coding and noncoding genes in the brain. These dysregulated genes may co-express in modules and interact within networks, consequently influencing the susceptibility to developing alcohol use disorder (AUD). In the present study, we performed an RNA-seq analysis of the expression of both long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 192 postmortem tissue samples collected from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control subjects of European ancestry. Applying the limma-voom method, we detected a total of 57 lncRNAs and 51 mRNAs exhibiting significant differential expression (<em>P</em><sub>adj</sub> &lt; 0.05 and fold-change ≥2) across at least one of the eight brain regions investigated. Machine learning analysis further confirmed the potential of these top genes in predicting AUD. Through Weighted Gene Co-expression Network Analysis (WGCNA), we identified distinct lncRNA-mRNA co-expression modules associated with AUD in each of the eight brain regions. Additionally, lncRNA-mRNA co-expression networks were constructed for each brain region using Cytoscape to reveal gene regulatory interactions implicated in AUD. Hub genes within these networks were found to be enriched in several key KEGG pathways, including <em>Axon Guidance</em>, <em>MAPK Signaling</em>, <em>p53 Signaling</em>, <em>Adherens Junction</em>, and <em>Neurodegeneration</em>. Our results underscore the significance of networks involving AUD-associated lncRNAs and mRNAs in modulating neuroplasticity in response to alcohol exposure. Further elucidating these molecular mechanisms holds promise for the development of targeted therapeutic interventions for AUD.</p></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001496/pdfft?md5=985fb9f6d87ace43e4fb38797a1213af&pid=1-s2.0-S0888754324001496-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001496\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001496","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

长期饮酒会干扰大脑中编码和非编码基因的表达。这些表达失调的基因可能以模块形式共同表达,并在网络中相互作用,从而影响罹患酒精使用障碍(AUD)的易感性。在本研究中,我们对从12名欧洲血统的AUD受试者和12名对照组受试者的8个脑区(杏仁核、尾状核、小脑、海马、伏隔核、前额叶皮层、普坦门和腹侧被盖区)采集的192份尸检组织样本中的长非编码RNA(lncRNA)和信使RNA(mRNA)的表达进行了RNA-seq分析。应用limma-voom方法,我们共检测到57个lncRNA和51个mRNA表现出显著的差异表达(Padj
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain lncRNA-mRNA co-expression regulatory networks and alcohol use disorder

Prolonged alcohol consumption can disturb the expression of both coding and noncoding genes in the brain. These dysregulated genes may co-express in modules and interact within networks, consequently influencing the susceptibility to developing alcohol use disorder (AUD). In the present study, we performed an RNA-seq analysis of the expression of both long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 192 postmortem tissue samples collected from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control subjects of European ancestry. Applying the limma-voom method, we detected a total of 57 lncRNAs and 51 mRNAs exhibiting significant differential expression (Padj < 0.05 and fold-change ≥2) across at least one of the eight brain regions investigated. Machine learning analysis further confirmed the potential of these top genes in predicting AUD. Through Weighted Gene Co-expression Network Analysis (WGCNA), we identified distinct lncRNA-mRNA co-expression modules associated with AUD in each of the eight brain regions. Additionally, lncRNA-mRNA co-expression networks were constructed for each brain region using Cytoscape to reveal gene regulatory interactions implicated in AUD. Hub genes within these networks were found to be enriched in several key KEGG pathways, including Axon Guidance, MAPK Signaling, p53 Signaling, Adherens Junction, and Neurodegeneration. Our results underscore the significance of networks involving AUD-associated lncRNAs and mRNAs in modulating neuroplasticity in response to alcohol exposure. Further elucidating these molecular mechanisms holds promise for the development of targeted therapeutic interventions for AUD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
期刊最新文献
Key role of CYP17A1 in Leydig cell function and testicular development in Qianbei Ma goats. Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows STRIP2 is regulated by the transcription factor Sp1 and promotes lung adenocarcinoma progression via activating the PI3K/AKT/mTOR/MYC signaling pathway Brain lncRNA-mRNA co-expression regulatory networks and alcohol use disorder Whole-genome sequence of Sclerotium delphinii, a pathogenic fungus of Dendrobium officinale southern blight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1