NeuroQuantify - 利用深度学习检测和量化神经元细胞和神经元长度的图像分析软件。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-08-27 DOI:10.1016/j.jneumeth.2024.110273
Ka My Dang , Yi Jia Zhang , Tianchen Zhang , Chao Wang , Anton Sinner , Piero Coronica , Joyce K.S. Poon
{"title":"NeuroQuantify - 利用深度学习检测和量化神经元细胞和神经元长度的图像分析软件。","authors":"Ka My Dang ,&nbsp;Yi Jia Zhang ,&nbsp;Tianchen Zhang ,&nbsp;Chao Wang ,&nbsp;Anton Sinner ,&nbsp;Piero Coronica ,&nbsp;Joyce K.S. Poon","doi":"10.1016/j.jneumeth.2024.110273","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.</p></div><div><h3>New method</h3><p>We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.</p></div><div><h3>Results</h3><p>NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.</p></div><div><h3>Comparison with existing methods</h3><p>NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.</p></div><div><h3>Conclusions</h3><p>We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at <span><span>https://github.com/StanleyZ0528/neural-image-segmentation</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110273"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024002188/pdfft?md5=0023c239982bf823c04acc4b3908a6ee&pid=1-s2.0-S0165027024002188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"NeuroQuantify – An image analysis software for detection and quantification of neuron cells and neurite lengths using deep learning\",\"authors\":\"Ka My Dang ,&nbsp;Yi Jia Zhang ,&nbsp;Tianchen Zhang ,&nbsp;Chao Wang ,&nbsp;Anton Sinner ,&nbsp;Piero Coronica ,&nbsp;Joyce K.S. Poon\",\"doi\":\"10.1016/j.jneumeth.2024.110273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.</p></div><div><h3>New method</h3><p>We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.</p></div><div><h3>Results</h3><p>NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.</p></div><div><h3>Comparison with existing methods</h3><p>NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.</p></div><div><h3>Conclusions</h3><p>We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at <span><span>https://github.com/StanleyZ0528/neural-image-segmentation</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110273\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002188/pdfft?md5=0023c239982bf823c04acc4b3908a6ee&pid=1-s2.0-S0165027024002188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002188\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:神经元网络显微图像中细胞和神经元的分割提供了有关神经元生长和神经元分化的宝贵定量信息,包括细胞数量、神经元、神经元长度和神经元方向。这些信息对于评估神经元网络的发展对细胞外刺激的反应至关重要,这对于研究神经元结构非常有用,例如神经退行性疾病和药物研究:我们开发了一款开源软件NeuroQuantify,它利用深度学习技术高效、快速地分割相衬显微镜图像中的细胞和神经元:NeuroQuantify具有以下几个主要功能:(i) 自动检测细胞和神经元;(ii) 基于相衬显微镜图像分割对图像进行后处理,以定量测量神经元长度;(iii) 识别神经元方向:NeuroQuantify 克服了现有方法在自动准确分析神经元结构方面的一些局限性。它是针对相衬图像而非荧光图像开发的。除了典型的细胞计数功能外,NeuroQuantify 还能检测和计数神经元、测量神经元长度并生成神经元方向分布:我们提供了一种快速有效地评估网络发展的宝贵工具。用户友好的 NeuroQuantify 软件可从 GitHub 上免费安装和下载,网址是 https://github.com/StanleyZ0528/neural-image-segmentation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuroQuantify – An image analysis software for detection and quantification of neuron cells and neurite lengths using deep learning

Background

The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.

New method

We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.

Results

NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.

Comparison with existing methods

NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.

Conclusions

We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at https://github.com/StanleyZ0528/neural-image-segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Assessment of voluntary drug and alcohol intake in Drosophila melanogaster using a modified one-tube capillary feeding assay Optimization of permeabilized brain tissue preparation to improve the analysis of mitochondrial oxidative capacities in specific subregions of the rat brain Discrete variational autoencoders BERT model-based transcranial focused ultrasound for Alzheimer's disease detection EEG-based fatigue state evaluation by combining complex network and frequency-spatial features Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1