Takanori Matsuura, Keiji Komatsu, Toshikatsu Suzumura, Stella Stavrou, Mary Lou Juanatas, Wonhee Park, Takahiro Ogawa
{"title":"人牙龈成纤维细胞在真空紫外线处理过的钛金属上的功能和迁移能力增强:减轻细胞压力以改善种植体周围细胞反应的意义。","authors":"Takanori Matsuura, Keiji Komatsu, Toshikatsu Suzumura, Stella Stavrou, Mary Lou Juanatas, Wonhee Park, Takahiro Ogawa","doi":"10.2186/jpr.JPR_D_24_00071","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress.</p><p><strong>Methods: </strong>Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated.</p><p><strong>Results: </strong>Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium.</p><p><strong>Conclusions: </strong>VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced functionality and migration of human gingival fibroblasts on vacuum ultraviolet light-treated titanium: An implication for mitigating cellular stress to improve peri-implant cellular reaction.\",\"authors\":\"Takanori Matsuura, Keiji Komatsu, Toshikatsu Suzumura, Stella Stavrou, Mary Lou Juanatas, Wonhee Park, Takahiro Ogawa\",\"doi\":\"10.2186/jpr.JPR_D_24_00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress.</p><p><strong>Methods: </strong>Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated.</p><p><strong>Results: </strong>Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium.</p><p><strong>Conclusions: </strong>VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.</p>\",\"PeriodicalId\":16887,\"journal\":{\"name\":\"Journal of prosthodontic research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of prosthodontic research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2186/jpr.JPR_D_24_00071\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_24_00071","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Enhanced functionality and migration of human gingival fibroblasts on vacuum ultraviolet light-treated titanium: An implication for mitigating cellular stress to improve peri-implant cellular reaction.
Purpose: The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress.
Methods: Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated.
Results: Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium.
Conclusions: VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.
期刊介绍:
Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication.
Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function.
The most-targeted topics:
1) Clinical Epidemiology and Prosthodontics
2) Fixed/Removable Prosthodontics
3) Oral Implantology
4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology)
5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism)
6) Orofacial Pain and Temporomandibular Disorders (TMDs)
7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry
8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation
9) Digital Dentistry
Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions.
Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.