Vladyslav Shtabovenko , Rolf Mertig , Frederik Orellana
{"title":"FeynCalc 10:多环积分是否梦想着计算机代码?","authors":"Vladyslav Shtabovenko , Rolf Mertig , Frederik Orellana","doi":"10.1016/j.cpc.2024.109357","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we report on a new version of <span>FeynCalc</span>, a <span>Mathematica</span> package widely used in the particle physics community for manipulating quantum field theoretical expressions and calculating Feynman diagrams. Highlights of the new version include greatly improved capabilities for doing multiloop calculations, including topology identification and minimization, optimized tensor reduction, rewriting of scalar products in terms of inverse denominators, detection of equivalent or scaleless loop integrals, derivation of Symanzik polynomials, Feynman parametric as well as graph representation for master integrals and initial support for handling differential equations and iterated integrals. In addition to that, the new release also features completely rewritten routines for color algebra simplifications, inclusion of symmetry relations between arguments of Passarino–Veltman functions, tools for determining matching coefficients and quantifying the agreement between numerical results, improved export to <figure><img></figure> and first steps towards a better support of calculations involving light-cone vectors.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"306 ","pages":"Article 109357"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002807/pdfft?md5=8047aa302e8233ef39f01de3a0e003f1&pid=1-s2.0-S0010465524002807-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FeynCalc 10: Do multiloop integrals dream of computer codes?\",\"authors\":\"Vladyslav Shtabovenko , Rolf Mertig , Frederik Orellana\",\"doi\":\"10.1016/j.cpc.2024.109357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we report on a new version of <span>FeynCalc</span>, a <span>Mathematica</span> package widely used in the particle physics community for manipulating quantum field theoretical expressions and calculating Feynman diagrams. Highlights of the new version include greatly improved capabilities for doing multiloop calculations, including topology identification and minimization, optimized tensor reduction, rewriting of scalar products in terms of inverse denominators, detection of equivalent or scaleless loop integrals, derivation of Symanzik polynomials, Feynman parametric as well as graph representation for master integrals and initial support for handling differential equations and iterated integrals. In addition to that, the new release also features completely rewritten routines for color algebra simplifications, inclusion of symmetry relations between arguments of Passarino–Veltman functions, tools for determining matching coefficients and quantifying the agreement between numerical results, improved export to <figure><img></figure> and first steps towards a better support of calculations involving light-cone vectors.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"306 \",\"pages\":\"Article 109357\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002807/pdfft?md5=8047aa302e8233ef39f01de3a0e003f1&pid=1-s2.0-S0010465524002807-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002807\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002807","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
FeynCalc 10: Do multiloop integrals dream of computer codes?
In this work we report on a new version of FeynCalc, a Mathematica package widely used in the particle physics community for manipulating quantum field theoretical expressions and calculating Feynman diagrams. Highlights of the new version include greatly improved capabilities for doing multiloop calculations, including topology identification and minimization, optimized tensor reduction, rewriting of scalar products in terms of inverse denominators, detection of equivalent or scaleless loop integrals, derivation of Symanzik polynomials, Feynman parametric as well as graph representation for master integrals and initial support for handling differential equations and iterated integrals. In addition to that, the new release also features completely rewritten routines for color algebra simplifications, inclusion of symmetry relations between arguments of Passarino–Veltman functions, tools for determining matching coefficients and quantifying the agreement between numerical results, improved export to and first steps towards a better support of calculations involving light-cone vectors.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.