利用 CAV 的车道管理实现混合交通流的效率和油耗

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2024-08-24 DOI:10.1016/j.physa.2024.130049
{"title":"利用 CAV 的车道管理实现混合交通流的效率和油耗","authors":"","doi":"10.1016/j.physa.2024.130049","DOIUrl":null,"url":null,"abstract":"<div><p>The mixed traffic flow of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs) will exist on highways for a long time, as the deployment of CAVs is gradual. To reduce the negative impact of HDVs on CAVs, the deployment of dedicated lanes has been considered an effective solution. Along with the dedicated lanes, three different lane management strategies will be formed, which are (C, H) strategy (CAVs dedicated lanes and HDVs dedicated lanes), (C, G) strategy (CAVs dedicated lanes and general lanes), and (G, H) strategy (general lanes and HDVs dedicated lanes). To evaluate the influence of dedicated lane settings on mixed traffic flow comprehensively, this paper proposes a framework for evaluating road segment efficiency and fuel consumption by considering lane management strategies. First, the possible traffic flow equilibrium states under three lane management strategies are discussed, and the characteristics of five car-following modes in mixed traffic flow are analyzed. Then, a mixed traffic flow capacity model considering platoon size is introduced to the traditional BPR function to establish a speed estimation model for mixed traffic flow and a fuel consumption estimation model for mixed traffic flow. Next, the traffic flow distribution model at the lane level in a steady state is derived for different lane management strategies. Based on the traffic flow distribution model, the speed estimation model and the fuel consumption estimation model for mixed traffic flow, which consider lane management strategies, are proposed. Finally, a numerical simulation is conducted to analyze the effects of different lane management strategies and configuration schemes on road segment efficiency and fuel consumption. The results of numerical experiments show that (1) at the same traffic demand, the operational speeds of vehicles under the (C, H) strategy and (G, H) strategy tend to increase and then decrease with the increase in the penetration rate of CAVs. While the speed of the vehicle under the (C, G) strategy increases with the increase in the penetration rate of CAVs. (2) Compared with the baseline strategy, all three management strategies can improve the operating efficiency of vehicles under certain traffic conditions. (3) At the same traffic demand, the average fuel consumption under the three strategies tends to decrease first and then increase slightly as the penetration rate increases. Increasing the number of dedicated lanes under specific traffic conditions can significantly increase the fuel consumption reduction rate under each strategy. At the same penetration rate, this advantage diminishes with the increase in traffic demand. (4) The increase in platoon size favors the efficiency of vehicle operations under different strategies. However, as platoon size increases, the marginal benefit of increasing platoon size becomes smaller and smaller. In addition, the average fuel consumption of vehicles has a low sensitivity to platoon size, and increasing platoon size may not always reduce fuel consumption.</p></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency and fuel consumption of mixed traffic flow with lane management of CAVs\",\"authors\":\"\",\"doi\":\"10.1016/j.physa.2024.130049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mixed traffic flow of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs) will exist on highways for a long time, as the deployment of CAVs is gradual. To reduce the negative impact of HDVs on CAVs, the deployment of dedicated lanes has been considered an effective solution. Along with the dedicated lanes, three different lane management strategies will be formed, which are (C, H) strategy (CAVs dedicated lanes and HDVs dedicated lanes), (C, G) strategy (CAVs dedicated lanes and general lanes), and (G, H) strategy (general lanes and HDVs dedicated lanes). To evaluate the influence of dedicated lane settings on mixed traffic flow comprehensively, this paper proposes a framework for evaluating road segment efficiency and fuel consumption by considering lane management strategies. First, the possible traffic flow equilibrium states under three lane management strategies are discussed, and the characteristics of five car-following modes in mixed traffic flow are analyzed. Then, a mixed traffic flow capacity model considering platoon size is introduced to the traditional BPR function to establish a speed estimation model for mixed traffic flow and a fuel consumption estimation model for mixed traffic flow. Next, the traffic flow distribution model at the lane level in a steady state is derived for different lane management strategies. Based on the traffic flow distribution model, the speed estimation model and the fuel consumption estimation model for mixed traffic flow, which consider lane management strategies, are proposed. Finally, a numerical simulation is conducted to analyze the effects of different lane management strategies and configuration schemes on road segment efficiency and fuel consumption. The results of numerical experiments show that (1) at the same traffic demand, the operational speeds of vehicles under the (C, H) strategy and (G, H) strategy tend to increase and then decrease with the increase in the penetration rate of CAVs. While the speed of the vehicle under the (C, G) strategy increases with the increase in the penetration rate of CAVs. (2) Compared with the baseline strategy, all three management strategies can improve the operating efficiency of vehicles under certain traffic conditions. (3) At the same traffic demand, the average fuel consumption under the three strategies tends to decrease first and then increase slightly as the penetration rate increases. Increasing the number of dedicated lanes under specific traffic conditions can significantly increase the fuel consumption reduction rate under each strategy. At the same penetration rate, this advantage diminishes with the increase in traffic demand. (4) The increase in platoon size favors the efficiency of vehicle operations under different strategies. However, as platoon size increases, the marginal benefit of increasing platoon size becomes smaller and smaller. In addition, the average fuel consumption of vehicles has a low sensitivity to platoon size, and increasing platoon size may not always reduce fuel consumption.</p></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124005582\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124005582","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于互联和自动驾驶车辆(CAV)的部署是渐进式的,因此高速公路上将长期存在互联和自动驾驶车辆(CAV)与人类驾驶车辆(HDV)的混合交通流。为了减少 HDV 对 CAV 的负面影响,部署专用车道被认为是一种有效的解决方案。与专用车道一起,将形成三种不同的车道管理策略,即(C,H)策略(CAV 专用车道和 HDV 专用车道)、(C,G)策略(CAV 专用车道和普通车道)和(G,H)策略(普通车道和 HDV 专用车道)。为了全面评估专用车道设置对混合交通流的影响,本文提出了一个通过考虑车道管理策略来评估路段效率和燃料消耗的框架。首先,讨论了三种车道管理策略下可能出现的交通流均衡状态,并分析了混合交通流中五种汽车跟随模式的特征。然后,在传统的 BPR 函数中引入考虑排量的混合交通流容量模型,建立混合交通流的速度估计模型和混合交通流的油耗估计模型。然后,针对不同的车道管理策略,推导出稳定状态下的车道级交通流分布模型。在交通流分布模型的基础上,提出了考虑车道管理策略的混合交通流速度估计模型和燃料消耗估计模型。最后,通过数值模拟分析了不同车道管理策略和配置方案对路段效率和油耗的影响。数值实验结果表明:(1) 在交通需求相同的情况下,(C,H)策略和(G,H)策略下的车辆运行速度随着 CAV 普及率的提高呈先升后降的趋势。而(C,G)策略下的车速则随着 CAV 渗透率的提高而提高。(2)与基准策略相比,三种管理策略都能在特定交通条件下提高车辆的运行效率。(3)在交通需求相同的情况下,随着普及率的提高,三种策略下的平均油耗呈先降后升的趋势。在特定交通条件下,增加专用车道的数量可以显著提高每种策略的油耗降低率。在渗透率相同的情况下,这种优势会随着交通需求的增加而减弱。(4) 排数的增加有利于提高不同策略下的车辆运行效率。然而,随着排数的增加,增加排数的边际效益越来越小。此外,车辆的平均燃料消耗对排数的敏感度较低,增加排数不一定能降低燃料消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency and fuel consumption of mixed traffic flow with lane management of CAVs

The mixed traffic flow of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs) will exist on highways for a long time, as the deployment of CAVs is gradual. To reduce the negative impact of HDVs on CAVs, the deployment of dedicated lanes has been considered an effective solution. Along with the dedicated lanes, three different lane management strategies will be formed, which are (C, H) strategy (CAVs dedicated lanes and HDVs dedicated lanes), (C, G) strategy (CAVs dedicated lanes and general lanes), and (G, H) strategy (general lanes and HDVs dedicated lanes). To evaluate the influence of dedicated lane settings on mixed traffic flow comprehensively, this paper proposes a framework for evaluating road segment efficiency and fuel consumption by considering lane management strategies. First, the possible traffic flow equilibrium states under three lane management strategies are discussed, and the characteristics of five car-following modes in mixed traffic flow are analyzed. Then, a mixed traffic flow capacity model considering platoon size is introduced to the traditional BPR function to establish a speed estimation model for mixed traffic flow and a fuel consumption estimation model for mixed traffic flow. Next, the traffic flow distribution model at the lane level in a steady state is derived for different lane management strategies. Based on the traffic flow distribution model, the speed estimation model and the fuel consumption estimation model for mixed traffic flow, which consider lane management strategies, are proposed. Finally, a numerical simulation is conducted to analyze the effects of different lane management strategies and configuration schemes on road segment efficiency and fuel consumption. The results of numerical experiments show that (1) at the same traffic demand, the operational speeds of vehicles under the (C, H) strategy and (G, H) strategy tend to increase and then decrease with the increase in the penetration rate of CAVs. While the speed of the vehicle under the (C, G) strategy increases with the increase in the penetration rate of CAVs. (2) Compared with the baseline strategy, all three management strategies can improve the operating efficiency of vehicles under certain traffic conditions. (3) At the same traffic demand, the average fuel consumption under the three strategies tends to decrease first and then increase slightly as the penetration rate increases. Increasing the number of dedicated lanes under specific traffic conditions can significantly increase the fuel consumption reduction rate under each strategy. At the same penetration rate, this advantage diminishes with the increase in traffic demand. (4) The increase in platoon size favors the efficiency of vehicle operations under different strategies. However, as platoon size increases, the marginal benefit of increasing platoon size becomes smaller and smaller. In addition, the average fuel consumption of vehicles has a low sensitivity to platoon size, and increasing platoon size may not always reduce fuel consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
Analysis of investment behavior among Filipinos: Integration of Social exchange theory (SET) and the Theory of planned behavior (TPB) Can Bitcoin trigger speculative pressures on the US Dollar? A novel ARIMA-EGARCH-Wavelet Neural Networks Impact of surface-roughness and fractality on electrical conductivity of SnS thin films Ethereum futures and the efficiency of cryptocurrency spot markets Role of delay in brain dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1