利用 GRU 层的α-EEG 节奏可靠性诊断精神分裂症

IF 2.1 4区 医学 Q3 CLINICAL NEUROLOGY Psychiatry Research: Neuroimaging Pub Date : 2024-08-28 DOI:10.1016/j.pscychresns.2024.111886
Pankaj Kumar Sahu, Karan Jain
{"title":"利用 GRU 层的α-EEG 节奏可靠性诊断精神分裂症","authors":"Pankaj Kumar Sahu,&nbsp;Karan Jain","doi":"10.1016/j.pscychresns.2024.111886","DOIUrl":null,"url":null,"abstract":"<div><p>Verifying schizophrenia (SZ) can be assisted by deep learning techniques and patterns in brain activity observed in alpha-EEG recordings. The suggested research provides evidence of the reliability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep-learning model for investigating SZ. This study suggests Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) for the various EEG-rhythm-based (gamma, beta, alpha, theta, and delta) diagnoses of SZ. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-Linear-Unit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients, and this might make it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital (binary) classifier's output nodes. The RDCGRU deep learning model attained the most excellent accuracy, 88.88 %, with alpha-EEG rhythm. The research achievements: The RDCGRU deep learning model's GRU cells responded superiorly to the alpha-EEG rhythm in EEG-based verification of SZ.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"344 ","pages":"Article 111886"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schizophrenia diagnosis using the GRU-layer's alpha-EEG rhythm's dependability\",\"authors\":\"Pankaj Kumar Sahu,&nbsp;Karan Jain\",\"doi\":\"10.1016/j.pscychresns.2024.111886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Verifying schizophrenia (SZ) can be assisted by deep learning techniques and patterns in brain activity observed in alpha-EEG recordings. The suggested research provides evidence of the reliability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep-learning model for investigating SZ. This study suggests Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) for the various EEG-rhythm-based (gamma, beta, alpha, theta, and delta) diagnoses of SZ. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-Linear-Unit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients, and this might make it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital (binary) classifier's output nodes. The RDCGRU deep learning model attained the most excellent accuracy, 88.88 %, with alpha-EEG rhythm. The research achievements: The RDCGRU deep learning model's GRU cells responded superiorly to the alpha-EEG rhythm in EEG-based verification of SZ.</p></div>\",\"PeriodicalId\":20776,\"journal\":{\"name\":\"Psychiatry Research: Neuroimaging\",\"volume\":\"344 \",\"pages\":\"Article 111886\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatry Research: Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925492724001094\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925492724001094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过深度学习技术和α-EEG记录中观察到的大脑活动模式,可以帮助验证精神分裂症(SZ)。建议的研究为基于门控-递归单元的深度学习模型调查 SZ 提供了阿尔法-脑电图节律可靠性的证据。这项研究提出了基于 Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) 的 SZ 诊断方法,适用于各种基于脑电图节奏(γ、β、α、θ 和 δ)的 SZ 诊断。该模型包括多个步长大于 1 的一维卷积(Con-1-D)褶皱,这使得该模型能够通过编程有效地学习如何减少输入信号。Con-1-D 层和多个门控递归单元 (GRU) 层构成了指数线性单元激活函数。这一功能强大的激活函数有助于深度网络训练并提高分类性能。密集耦合卷积门控递归单元(DCGRU)层使 RDCGRU 能够解决梯度消失或爆炸带来的训练精度损失问题,这可能会使 RDCGRU 开发出针对更复杂问题的高强度深度版本成为可能。在数字(二进制)分类器的输出节点中实现了 sigmoid 激活函数。RDCGRU 深度学习模型在α-EEG 韵律方面取得了最出色的准确率(88.88%)。研究成果:RDCGRU深度学习模型的GRU单元对基于脑电图的SZ验证中α-EEG节律的响应更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Schizophrenia diagnosis using the GRU-layer's alpha-EEG rhythm's dependability

Verifying schizophrenia (SZ) can be assisted by deep learning techniques and patterns in brain activity observed in alpha-EEG recordings. The suggested research provides evidence of the reliability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep-learning model for investigating SZ. This study suggests Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) for the various EEG-rhythm-based (gamma, beta, alpha, theta, and delta) diagnoses of SZ. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-Linear-Unit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients, and this might make it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital (binary) classifier's output nodes. The RDCGRU deep learning model attained the most excellent accuracy, 88.88 %, with alpha-EEG rhythm. The research achievements: The RDCGRU deep learning model's GRU cells responded superiorly to the alpha-EEG rhythm in EEG-based verification of SZ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychiatry Research: Neuroimaging
Psychiatry Research: Neuroimaging 医学-精神病学
CiteScore
3.80
自引率
0.00%
发文量
86
审稿时长
22.5 weeks
期刊介绍: The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.
期刊最新文献
Editorial Board Sex differences in inter-temporal decision making and cortical thickness of the orbitofrontal and insula in young adult cannabis users: Evidence from 1111 subjects Reward functioning in posttraumatic stress disorder, metabolic syndrome, and psychological resilience Resting state functional connectivity in adolescents with substance use disorder and their unaffected siblings The association between eye movement characteristics and cognitive function in adolescents with major depressive disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1