变化接触机器人操纵任务中的轨迹跟踪自适应框架

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-08-22 DOI:10.1016/j.robot.2024.104785
Saif Sidhik , Mohan Sridharan , Dirk Ruiken
{"title":"变化接触机器人操纵任务中的轨迹跟踪自适应框架","authors":"Saif Sidhik ,&nbsp;Mohan Sridharan ,&nbsp;Dirk Ruiken","doi":"10.1016/j.robot.2024.104785","DOIUrl":null,"url":null,"abstract":"<div><p>We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks, efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"181 ","pages":"Article 104785"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024001696/pdfft?md5=63b435469b19c38172eec7bb29399ca6&pid=1-s2.0-S0921889024001696-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An adaptive framework for trajectory following in changing-contact robot manipulation tasks\",\"authors\":\"Saif Sidhik ,&nbsp;Mohan Sridharan ,&nbsp;Dirk Ruiken\",\"doi\":\"10.1016/j.robot.2024.104785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks, efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"181 \",\"pages\":\"Article 104785\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001696/pdfft?md5=63b435469b19c38172eec7bb29399ca6&pid=1-s2.0-S0921889024001696-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001696\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001696","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种自适应控制框架,适用于需要机器人与物体和表面进行接触和断开接触的接触变化型机器人操纵任务。此类任务的片断连续交互动力学特性使得构建和使用单一动力学模型或控制策略变得十分困难。此外,接触变化过程中的非线性动力学可能会损坏机器人或领域中的物体。我们的框架使机器人能够逐步提高对此类任务中接触变化的预测能力,高效学习片断连续交互动力学模型,并基于任务空间可变阻抗控制器提供平滑准确的轨迹跟踪。我们通过实验比较了我们的框架与代表性控制方法的性能,从而确定我们框架的自适应控制、预测和增量学习能力对于实现对不断变化的接触机器人操纵任务的平滑控制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive framework for trajectory following in changing-contact robot manipulation tasks

We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks, efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Editorial Board A sensorless approach for cable failure detection and identification in cable-driven parallel robots Learning latent causal factors from the intricate sensor feedback of contact-rich robotic assembly tasks GPS-free autonomous navigation in cluttered tree rows with deep semantic segmentation Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1