通过将改进的生成式对抗网络与增强型深度极端学习机相结合,实现不平衡数据环境下的新型冷风机故障诊断方法

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-08-31 DOI:10.1016/j.engappai.2024.109218
{"title":"通过将改进的生成式对抗网络与增强型深度极端学习机相结合,实现不平衡数据环境下的新型冷风机故障诊断方法","authors":"","doi":"10.1016/j.engappai.2024.109218","DOIUrl":null,"url":null,"abstract":"<div><p>The existing chiller fault diagnosis approaches often ignore the problem of data imbalance of chiller, which leads to low accuracy in diagnosing minority class fault samples. To conquer this issue, this paper proposes an improved generative adversarial network (IGAN) with an enhanced deep extreme learning machine (EDELM) method. Firstly, to better learn the latent structure of chiller fault data, the multi-head attention (MHA) mechanism is integrated into the traditional generative adversarial network (GAN) method to generate new samples that are more in line with the distribution of minority class fault samples for the purpose of obtaining a rebalanced dataset. Secondly, to fully handle the nonlinear features hidden in the massive chiller data, the deep extreme learning machine (DELM) basic classifier is trained on the rebalanced dataset. To enhance more attention to the misclassified samples, the adaptive boosting (AdaBoost) ensemble strategy is employed to train multiple DELM basic classifiers by updating the sample weights following the classification results through the iterative rounds. The voting weight of the current DELM basic classifier is given according to its fault diagnosis accuracy. Finally, multiple DELM basic classifiers are ensembled according to their voting weights to obtain the final ensemble classifier. The pattern of the snapshot sample is determined through the weighted voting strategy. Detailed experimental results based on the research project 1043 (RP-1043) conducted by the American society of heating, refrigeration, and air conditioning engineers (ASHRAE) confirm the effectiveness of the proposed IGAN-EDELM approach under imbalanced data environments.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new chiller fault diagnosis method under the imbalanced data environment via combining an improved generative adversarial network with an enhanced deep extreme learning machine\",\"authors\":\"\",\"doi\":\"10.1016/j.engappai.2024.109218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existing chiller fault diagnosis approaches often ignore the problem of data imbalance of chiller, which leads to low accuracy in diagnosing minority class fault samples. To conquer this issue, this paper proposes an improved generative adversarial network (IGAN) with an enhanced deep extreme learning machine (EDELM) method. Firstly, to better learn the latent structure of chiller fault data, the multi-head attention (MHA) mechanism is integrated into the traditional generative adversarial network (GAN) method to generate new samples that are more in line with the distribution of minority class fault samples for the purpose of obtaining a rebalanced dataset. Secondly, to fully handle the nonlinear features hidden in the massive chiller data, the deep extreme learning machine (DELM) basic classifier is trained on the rebalanced dataset. To enhance more attention to the misclassified samples, the adaptive boosting (AdaBoost) ensemble strategy is employed to train multiple DELM basic classifiers by updating the sample weights following the classification results through the iterative rounds. The voting weight of the current DELM basic classifier is given according to its fault diagnosis accuracy. Finally, multiple DELM basic classifiers are ensembled according to their voting weights to obtain the final ensemble classifier. The pattern of the snapshot sample is determined through the weighted voting strategy. Detailed experimental results based on the research project 1043 (RP-1043) conducted by the American society of heating, refrigeration, and air conditioning engineers (ASHRAE) confirm the effectiveness of the proposed IGAN-EDELM approach under imbalanced data environments.</p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624013769\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624013769","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的冷水机故障诊断方法往往忽略了冷水机数据不平衡的问题,导致对少数类别故障样本的诊断准确率较低。为了解决这一问题,本文提出了一种采用增强型深度极端学习机(EDELM)方法的改进生成对抗网络(IGAN)。首先,为了更好地学习冷水机故障数据的潜在结构,在传统的生成式对抗网络(GAN)方法中集成了多头注意(MHA)机制,生成更符合少数类故障样本分布的新样本,从而获得重新平衡的数据集。其次,为了充分处理隐藏在海量冷水机数据中的非线性特征,在重新平衡的数据集上训练了深度极端学习机(DELM)基本分类器。为了加强对误分样本的关注,采用了自适应提升(AdaBoost)集合策略,通过迭代轮次更新样本权重来训练多个 DELM 基本分类器。当前 DELM 基本分类器的投票权重根据其故障诊断准确率确定。最后,根据多个 DELM 基本分类器的投票权重对其进行集合,得到最终的集合分类器。通过加权投票策略确定快照样本的模式。基于美国加热、制冷和空调工程师协会(ASHRAE)开展的研究项目 1043(RP-1043)的详细实验结果证实了所提出的 IGAN-EDELM 方法在不平衡数据环境下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new chiller fault diagnosis method under the imbalanced data environment via combining an improved generative adversarial network with an enhanced deep extreme learning machine

The existing chiller fault diagnosis approaches often ignore the problem of data imbalance of chiller, which leads to low accuracy in diagnosing minority class fault samples. To conquer this issue, this paper proposes an improved generative adversarial network (IGAN) with an enhanced deep extreme learning machine (EDELM) method. Firstly, to better learn the latent structure of chiller fault data, the multi-head attention (MHA) mechanism is integrated into the traditional generative adversarial network (GAN) method to generate new samples that are more in line with the distribution of minority class fault samples for the purpose of obtaining a rebalanced dataset. Secondly, to fully handle the nonlinear features hidden in the massive chiller data, the deep extreme learning machine (DELM) basic classifier is trained on the rebalanced dataset. To enhance more attention to the misclassified samples, the adaptive boosting (AdaBoost) ensemble strategy is employed to train multiple DELM basic classifiers by updating the sample weights following the classification results through the iterative rounds. The voting weight of the current DELM basic classifier is given according to its fault diagnosis accuracy. Finally, multiple DELM basic classifiers are ensembled according to their voting weights to obtain the final ensemble classifier. The pattern of the snapshot sample is determined through the weighted voting strategy. Detailed experimental results based on the research project 1043 (RP-1043) conducted by the American society of heating, refrigeration, and air conditioning engineers (ASHRAE) confirm the effectiveness of the proposed IGAN-EDELM approach under imbalanced data environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1