{"title":"存在量化执行器时的采样数据反馈控制设计","authors":"Francesco Ferrante , Sophie Tarbouriech","doi":"10.1016/j.nahs.2024.101530","DOIUrl":null,"url":null,"abstract":"<div><p>Sampled-data control linear systems subject to uniform input quantization are considered. Within this context, the design of a stabilizing sampled-data state feedback controller is proposed. The proposed controller guarantees uniform global asymptotic stability of an attractor containing the origin of the plant. Due to the interplay of continuous-time dynamics and instantaneous changes in the state, the closed-loop system is modeled as a hybrid dynamical system. By relying on a quadratic clock-dependent Lyapunov function, sufficient conditions in the form of bilinear matrix inequalities are provided to ensure closed-loop stability. These conditions are employed to devise an optimal controller design algorithm based on the use of convex–concave decomposition approach. This leads to an iterative design algorithm based on the solution to a sequence of semidefinite programs for which feasibility is guaranteed. Some illustrative examples show the effectiveness of the proposed results.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"54 ","pages":"Article 101530"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampled-data feedback control design in the presence of quantized actuators\",\"authors\":\"Francesco Ferrante , Sophie Tarbouriech\",\"doi\":\"10.1016/j.nahs.2024.101530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sampled-data control linear systems subject to uniform input quantization are considered. Within this context, the design of a stabilizing sampled-data state feedback controller is proposed. The proposed controller guarantees uniform global asymptotic stability of an attractor containing the origin of the plant. Due to the interplay of continuous-time dynamics and instantaneous changes in the state, the closed-loop system is modeled as a hybrid dynamical system. By relying on a quadratic clock-dependent Lyapunov function, sufficient conditions in the form of bilinear matrix inequalities are provided to ensure closed-loop stability. These conditions are employed to devise an optimal controller design algorithm based on the use of convex–concave decomposition approach. This leads to an iterative design algorithm based on the solution to a sequence of semidefinite programs for which feasibility is guaranteed. Some illustrative examples show the effectiveness of the proposed results.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"54 \",\"pages\":\"Article 101530\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X24000670\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000670","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Sampled-data feedback control design in the presence of quantized actuators
Sampled-data control linear systems subject to uniform input quantization are considered. Within this context, the design of a stabilizing sampled-data state feedback controller is proposed. The proposed controller guarantees uniform global asymptotic stability of an attractor containing the origin of the plant. Due to the interplay of continuous-time dynamics and instantaneous changes in the state, the closed-loop system is modeled as a hybrid dynamical system. By relying on a quadratic clock-dependent Lyapunov function, sufficient conditions in the form of bilinear matrix inequalities are provided to ensure closed-loop stability. These conditions are employed to devise an optimal controller design algorithm based on the use of convex–concave decomposition approach. This leads to an iterative design algorithm based on the solution to a sequence of semidefinite programs for which feasibility is guaranteed. Some illustrative examples show the effectiveness of the proposed results.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.