{"title":"针对各种物理现象中出现的一种 Lane-Emden 型方程的帕代近似高效递推技术","authors":"Jyoti , Mandeep Singh","doi":"10.1016/j.matcom.2024.08.025","DOIUrl":null,"url":null,"abstract":"<div><p>The study numerically examined a class of nonlinear singular differential problems known as the Lane–Emden differential equation, which emerges in numerous real-world situations. The primary goal of this work is to formulate a computationally efficient iterative technique for solving the nonlinear Lane–Emden initial value problems. The proposed approach is a hybrid of the homotopy perturbation method and the Padé approximation. The nonlinear singular Lane–Emden initial value problem (SLEIVP) is transformed into an equivalent recursive integral employing the Picard’s approach. To resolve the singularity and nonlinearity, the recursive integral equation is transformed into a system of integral equations by using the homotopy notion. Furthermore, to enhance the convergence rate of the technique, Padé approximation is taken into account. The convergence analysis for the proposed approach is also conducted. The present technique is tested on SLEIVPs and numerical findings are compared with the existing techniques, to demonstrate the accuracy, effectiveness and ease of use.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient recursive technique with Padé approximation for a kind of Lane–Emden type equations emerging in various physical phenomena\",\"authors\":\"Jyoti , Mandeep Singh\",\"doi\":\"10.1016/j.matcom.2024.08.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study numerically examined a class of nonlinear singular differential problems known as the Lane–Emden differential equation, which emerges in numerous real-world situations. The primary goal of this work is to formulate a computationally efficient iterative technique for solving the nonlinear Lane–Emden initial value problems. The proposed approach is a hybrid of the homotopy perturbation method and the Padé approximation. The nonlinear singular Lane–Emden initial value problem (SLEIVP) is transformed into an equivalent recursive integral employing the Picard’s approach. To resolve the singularity and nonlinearity, the recursive integral equation is transformed into a system of integral equations by using the homotopy notion. Furthermore, to enhance the convergence rate of the technique, Padé approximation is taken into account. The convergence analysis for the proposed approach is also conducted. The present technique is tested on SLEIVPs and numerical findings are compared with the existing techniques, to demonstrate the accuracy, effectiveness and ease of use.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003355\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003355","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An efficient recursive technique with Padé approximation for a kind of Lane–Emden type equations emerging in various physical phenomena
The study numerically examined a class of nonlinear singular differential problems known as the Lane–Emden differential equation, which emerges in numerous real-world situations. The primary goal of this work is to formulate a computationally efficient iterative technique for solving the nonlinear Lane–Emden initial value problems. The proposed approach is a hybrid of the homotopy perturbation method and the Padé approximation. The nonlinear singular Lane–Emden initial value problem (SLEIVP) is transformed into an equivalent recursive integral employing the Picard’s approach. To resolve the singularity and nonlinearity, the recursive integral equation is transformed into a system of integral equations by using the homotopy notion. Furthermore, to enhance the convergence rate of the technique, Padé approximation is taken into account. The convergence analysis for the proposed approach is also conducted. The present technique is tested on SLEIVPs and numerical findings are compared with the existing techniques, to demonstrate the accuracy, effectiveness and ease of use.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.