多地点库存系统的非参数数据驱动学习算法

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Letters Pub Date : 2024-08-22 DOI:10.1016/j.orl.2024.107163
Zijun Zhong , Zhou He
{"title":"多地点库存系统的非参数数据驱动学习算法","authors":"Zijun Zhong ,&nbsp;Zhou He","doi":"10.1016/j.orl.2024.107163","DOIUrl":null,"url":null,"abstract":"<div><p>We study a multilocation inventory system with unknown demand distribution using a nonparametric approach. The system consists of multiple distribution centers and customer locations, where products are shipped from the distribution centers to fulfill customer demands. We propose a novel algorithm, DMLI, for adaptive inventory management. Under specific conditions, we establish that the average expected <em>T</em>-period regret of DMLI converges to the optimal rate of <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>T</mi></mrow></msqrt><mo>)</mo></math></span>.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107163"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric data-driven learning algorithms for multilocation inventory systems\",\"authors\":\"Zijun Zhong ,&nbsp;Zhou He\",\"doi\":\"10.1016/j.orl.2024.107163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a multilocation inventory system with unknown demand distribution using a nonparametric approach. The system consists of multiple distribution centers and customer locations, where products are shipped from the distribution centers to fulfill customer demands. We propose a novel algorithm, DMLI, for adaptive inventory management. Under specific conditions, we establish that the average expected <em>T</em>-period regret of DMLI converges to the optimal rate of <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>T</mi></mrow></msqrt><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"57 \",\"pages\":\"Article 107163\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000993\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000993","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们采用非参数方法研究了需求分布未知的多地点库存系统。该系统由多个配送中心和客户所在地组成,产品从配送中心发货以满足客户需求。我们提出了一种用于自适应库存管理的新型算法 DMLI。在特定条件下,我们确定了 DMLI 的平均预期 T 期后悔收敛到 O(1/T) 的最优率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric data-driven learning algorithms for multilocation inventory systems

We study a multilocation inventory system with unknown demand distribution using a nonparametric approach. The system consists of multiple distribution centers and customer locations, where products are shipped from the distribution centers to fulfill customer demands. We propose a novel algorithm, DMLI, for adaptive inventory management. Under specific conditions, we establish that the average expected T-period regret of DMLI converges to the optimal rate of O(1/T).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
期刊最新文献
Break maximization for round-robin tournaments without consecutive breaks Anchored rescheduling problem with non-availability periods On BASTA for discrete-time queues Assessing the accuracy of externalities prediction in a LCFS-PR M/G/1 queue under partial information Optimal strategies and values for monotone and classical mean-variance preferences coincide when asset prices are continuous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1