癸酸诺龙通过激活NF-κB通路靶向IRAK1和TRAF6的miRNA-146a诱导肾损伤:适度运动的影响

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Steroids Pub Date : 2024-08-27 DOI:10.1016/j.steroids.2024.109503
Alireza Shirpoor , Roya Naderi
{"title":"癸酸诺龙通过激活NF-κB通路靶向IRAK1和TRAF6的miRNA-146a诱导肾损伤:适度运动的影响","authors":"Alireza Shirpoor ,&nbsp;Roya Naderi","doi":"10.1016/j.steroids.2024.109503","DOIUrl":null,"url":null,"abstract":"<div><p>Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)<!--> <!-->(N), Exercise (Exe), Nandrolone + Exercise (N+Exe).</p></div><div><h3>Results</h3><p>After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered ideal<!--> <!-->theranomiRNA<!--> <!-->candidates for diagnosis and treatment.</p><p>Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.</p></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"211 ","pages":"Article 109503"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nandrolone decanoate induced kidney injury through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB pathway: The effect of moderate exercise\",\"authors\":\"Alireza Shirpoor ,&nbsp;Roya Naderi\",\"doi\":\"10.1016/j.steroids.2024.109503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)<!--> <!-->(N), Exercise (Exe), Nandrolone + Exercise (N+Exe).</p></div><div><h3>Results</h3><p>After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered ideal<!--> <!-->theranomiRNA<!--> <!-->candidates for diagnosis and treatment.</p><p>Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.</p></div>\",\"PeriodicalId\":21997,\"journal\":{\"name\":\"Steroids\",\"volume\":\"211 \",\"pages\":\"Article 109503\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steroids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039128X24001417\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X24001417","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

合成代谢雄性类固醇(AAS)的滥用与包括肾脏在内的多个组织的一些异常现象有关。然而,参与合成代谢雄性类固醇诱发肾脏疾病的确切分子介质仍然难以确定。本研究的主要目的是探讨癸酸诺龙单独或与适度运动相结合对肾损伤的影响及其相关机制。将 32 只雄性 Wistar 大鼠随机分为四组:对照组(Con)、诺龙(10 毫克/千克)组(N)、运动组(Exe)、诺龙 + 运动组(N+Exe)。结果 6 周后,诺龙治疗导致血清胱抑素 c、尿素、肌酐、白蛋白尿和白蛋白/肌酐比值等功能参数显著增加,表明肾功能出现障碍。免疫印迹表明,IRAK1、TRAF6、TNF-α、NF-κB、iNOS 和 TGF-β 蛋白在诺龙治疗大鼠肾脏中的表达明显升高。适度运动可减轻肾功能障碍、组织学异常和上述蛋白的表达。我们的研究结果表明,服用诺龙可能通过激活 NF-κB 和 TGF-β 通路,靶向 IRAK1 和 TRAF6 的 miRNA-146a 对肾脏组织造成损伤。这些结果为确定与诺龙治疗有关的miRNA提供了未来的研究方向,而适度的运动可以改善诺龙治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nandrolone decanoate induced kidney injury through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB pathway: The effect of moderate exercise

Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg) (N), Exercise (Exe), Nandrolone + Exercise (N+Exe).

Results

After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered ideal theranomiRNA candidates for diagnosis and treatment.

Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Steroids
Steroids 医学-内分泌学与代谢
CiteScore
5.10
自引率
3.70%
发文量
120
审稿时长
73 days
期刊介绍: STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.
期刊最新文献
Cardioprotective effects of S-equol, a soybean metabolite with estrogen activity, and role of the PI3K/Akt pathway in a male rat model of ischemic reperfusion PTX3 impairs granulosa cell function by promoting the secretion of inflammatory cytokines in M1 macrophages via the JAK pathway. Editorial Board Comparison of a chemiluminescence immunoassay with LC–MS/MS in the determination of the plasma aldosterone concentration in patients with impaired renal function Unraveling the impact of semaglutide in a diabetic rat model of testicular dysfunction: Insights into spermatogenesis pathways and miRNA-148a-5p
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1