{"title":"具有脉冲延迟的多代理系统的输入-状态混合脉冲形成稳定化","authors":"Zhanlue Liang , Xinzhi Liu","doi":"10.1016/j.cnsns.2024.108323","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the input-to-state formation stabilization problem of nonlinear multi-agent systems within a hybrid impulsive framework, considering delay-dependent impulses, strong nonlinearity, and deception attack signals. By leveraging Lyapunov functionals, impulsive comparison theory, average impulsive interval methods, and graph theory, we develop novel criteria for possessing locally input-to-state and integral input-to-state formation stabilization across different impulse sequence classes. These criteria are expressed in terms of continuous/impulsive feedback gains, time delay size, nonlinearity strength, uniform upper bound of impulsive interval, and length of average impulsive interval. Notably, the design of control impulses benefit the destabilizing continuous dynamics in the formation stabilization process. To demonstrate the effectiveness and validity of the analytical results, we provide numerical simulation examples involving various types of external attack signals.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005082/pdfft?md5=f838f72652caefb4580a030184600827&pid=1-s2.0-S1007570424005082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Input-to-state hybrid impulsive formation stabilization for multi-agent systems with impulse delays\",\"authors\":\"Zhanlue Liang , Xinzhi Liu\",\"doi\":\"10.1016/j.cnsns.2024.108323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the input-to-state formation stabilization problem of nonlinear multi-agent systems within a hybrid impulsive framework, considering delay-dependent impulses, strong nonlinearity, and deception attack signals. By leveraging Lyapunov functionals, impulsive comparison theory, average impulsive interval methods, and graph theory, we develop novel criteria for possessing locally input-to-state and integral input-to-state formation stabilization across different impulse sequence classes. These criteria are expressed in terms of continuous/impulsive feedback gains, time delay size, nonlinearity strength, uniform upper bound of impulsive interval, and length of average impulsive interval. Notably, the design of control impulses benefit the destabilizing continuous dynamics in the formation stabilization process. To demonstrate the effectiveness and validity of the analytical results, we provide numerical simulation examples involving various types of external attack signals.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005082/pdfft?md5=f838f72652caefb4580a030184600827&pid=1-s2.0-S1007570424005082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Input-to-state hybrid impulsive formation stabilization for multi-agent systems with impulse delays
This paper addresses the input-to-state formation stabilization problem of nonlinear multi-agent systems within a hybrid impulsive framework, considering delay-dependent impulses, strong nonlinearity, and deception attack signals. By leveraging Lyapunov functionals, impulsive comparison theory, average impulsive interval methods, and graph theory, we develop novel criteria for possessing locally input-to-state and integral input-to-state formation stabilization across different impulse sequence classes. These criteria are expressed in terms of continuous/impulsive feedback gains, time delay size, nonlinearity strength, uniform upper bound of impulsive interval, and length of average impulsive interval. Notably, the design of control impulses benefit the destabilizing continuous dynamics in the formation stabilization process. To demonstrate the effectiveness and validity of the analytical results, we provide numerical simulation examples involving various types of external attack signals.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.