轻松实现粉煤灰的可持续升级再循环,制成多功能耐用超疏水性涂料

IF 6.5 2区 材料科学 Q1 CHEMISTRY, APPLIED Progress in Organic Coatings Pub Date : 2024-08-31 DOI:10.1016/j.porgcoat.2024.108770
{"title":"轻松实现粉煤灰的可持续升级再循环,制成多功能耐用超疏水性涂料","authors":"","doi":"10.1016/j.porgcoat.2024.108770","DOIUrl":null,"url":null,"abstract":"<div><p>Fly ash (FA), a hazardous byproduct of coal combustion in power plants, poses significant environmental and health risks due to improper disposal and utilization. This study introduces a facile, sustainable, and cost-effective method for converting FA into a robust superhydrophobic material for various substrates. -FA particles are modified with polydopamine (PD) in water and covalently grafted with octadecylamine (ODA) via the Michael Addition-Schiff Base reactions, resulting in robust superhydrophobic FA (SH-FA) with a water contact angle (WCA) of 163° (±3.1). When applied as a coating to jute, cotton, polyester fibers, PU sponge, and wood, they became superhydrophobic, with WCAs ranging from 154.7 to 161.2° except for the wood substrate, which achieved a WCA of 132° (±3°). The coated polyester fabric exhibited remarkable durability, retaining consistent WCA values after 70 abrasion cycles, 75 adhesive tape peelings, and 20 detergent washing cycles. It also showcased excellent self-cleaning properties, effectively repelling dust and various liquids. Additionally, the coated PU sponge demonstrated exceptional performance in separating oil from different oil/water mixtures, achieving rapid separation of organic solvents within seconds and maintaining a separation efficiency of over 98% even after 12 reuse cycles. These results indicate the potential for transforming FA through effective management.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile sustainable upcycling of fly ash into multifunctional durable superhydrophobic coatings\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fly ash (FA), a hazardous byproduct of coal combustion in power plants, poses significant environmental and health risks due to improper disposal and utilization. This study introduces a facile, sustainable, and cost-effective method for converting FA into a robust superhydrophobic material for various substrates. -FA particles are modified with polydopamine (PD) in water and covalently grafted with octadecylamine (ODA) via the Michael Addition-Schiff Base reactions, resulting in robust superhydrophobic FA (SH-FA) with a water contact angle (WCA) of 163° (±3.1). When applied as a coating to jute, cotton, polyester fibers, PU sponge, and wood, they became superhydrophobic, with WCAs ranging from 154.7 to 161.2° except for the wood substrate, which achieved a WCA of 132° (±3°). The coated polyester fabric exhibited remarkable durability, retaining consistent WCA values after 70 abrasion cycles, 75 adhesive tape peelings, and 20 detergent washing cycles. It also showcased excellent self-cleaning properties, effectively repelling dust and various liquids. Additionally, the coated PU sponge demonstrated exceptional performance in separating oil from different oil/water mixtures, achieving rapid separation of organic solvents within seconds and maintaining a separation efficiency of over 98% even after 12 reuse cycles. These results indicate the potential for transforming FA through effective management.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024005629\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005629","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

粉煤灰(FA)是发电厂燃煤过程中产生的一种有害副产品,由于处置和利用不当,会对环境和健康造成严重危害。本研究介绍了一种简便、可持续且具有成本效益的方法,可将粉煤灰转化为适用于各种基底的坚固的超疏水材料。-在水中用多巴胺(PD)对 FA 颗粒进行改性,并通过迈克尔加成-席夫碱反应与十八胺(ODA)进行共价接枝,从而制备出坚固的超疏水 FA(SH-FA),其水接触角(WCA)为 163°(±3.1)。将其用作黄麻、棉花、聚酯纤维、聚氨酯海绵和木材的涂层时,它们都具有超疏水性,WCA 在 154.7 至 161.2°之间,但木材基材除外,其 WCA 为 132°(±3°)。涂层聚酯织物表现出卓越的耐久性,在经过 70 次磨损、75 次胶带剥离和 20 次洗涤剂洗涤后,仍能保持稳定的 WCA 值。这种织物还具有出色的自洁性能,能有效阻挡灰尘和各种液体。此外,涂有涂层的聚氨酯海绵在从不同的油/水混合物中分离油方面表现出色,能在几秒钟内实现有机溶剂的快速分离,即使在重复使用 12 次后,分离效率仍能保持在 98% 以上。这些结果表明,通过有效管理,FA 有可能实现转型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facile sustainable upcycling of fly ash into multifunctional durable superhydrophobic coatings

Fly ash (FA), a hazardous byproduct of coal combustion in power plants, poses significant environmental and health risks due to improper disposal and utilization. This study introduces a facile, sustainable, and cost-effective method for converting FA into a robust superhydrophobic material for various substrates. -FA particles are modified with polydopamine (PD) in water and covalently grafted with octadecylamine (ODA) via the Michael Addition-Schiff Base reactions, resulting in robust superhydrophobic FA (SH-FA) with a water contact angle (WCA) of 163° (±3.1). When applied as a coating to jute, cotton, polyester fibers, PU sponge, and wood, they became superhydrophobic, with WCAs ranging from 154.7 to 161.2° except for the wood substrate, which achieved a WCA of 132° (±3°). The coated polyester fabric exhibited remarkable durability, retaining consistent WCA values after 70 abrasion cycles, 75 adhesive tape peelings, and 20 detergent washing cycles. It also showcased excellent self-cleaning properties, effectively repelling dust and various liquids. Additionally, the coated PU sponge demonstrated exceptional performance in separating oil from different oil/water mixtures, achieving rapid separation of organic solvents within seconds and maintaining a separation efficiency of over 98% even after 12 reuse cycles. These results indicate the potential for transforming FA through effective management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
期刊最新文献
A facile strategy to resolve the contradiction between dispersion stability and coating anti-smudge performance of bio-based waterborne polyurethane under ambient condition Polydopamine-polyvinyl alcohol hydrogel coatings with enhanced mechanical and tribological performance Anti-corrosion studies on cardanol epoxy coatings cured with redox-active aromatic trimer and tetramer oligoanilines Fluorine-containing main-chain type active esters as curing agents for epoxy resins to achieve superior dielectric and thermal performances Protein-tannin interactions towards fabricating flame-retardant, UV-resistance, antibacterial and mechanical-reinforced PA66 fabric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1