通过数据融合和高斯过程回归进行奥黑尔机场道路交通预测

IF 7.4 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Traffic and Transportation Engineering-English Edition Pub Date : 2024-08-01 DOI:10.1016/j.jtte.2023.11.006
Damola M. Akinlana , Arindam Fadikar , Stefan M. Wild , Natalia Zuniga-Garcia , Joshua Auld
{"title":"通过数据融合和高斯过程回归进行奥黑尔机场道路交通预测","authors":"Damola M. Akinlana ,&nbsp;Arindam Fadikar ,&nbsp;Stefan M. Wild ,&nbsp;Natalia Zuniga-Garcia ,&nbsp;Joshua Auld","doi":"10.1016/j.jtte.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes an approach of leveraging information gathered from multiple traffic data sources at different resolutions to obtain approximate inference on the traffic distribution of Chicago's O'Hare Airport area. Specifically, it proposes the ingestion of traffic datasets at different resolutions to build spatiotemporal models for predicting the distribution of traffic volume on the road network. Due to its good adaptability and flexibility for spatiotemporal data, the Gaussian process (GP) regression was employed to provide short-term forecasts using data collected by loop detectors (sensors) and supplemented by telematics data. The GP regression is used to make predictions of the distribution of the proportion of sensor data traffic volume represented by the telematics data for each location of the sensors. Consequently, the fitted GP model can be used to determine the approximate traffic distribution for a testing location outside of the training points. Policymakers in the transportation sector can find the results of this work helpful for making informed decisions relating to current and future transportation conditions in the area.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":"11 4","pages":"Pages 721-732"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000795/pdfft?md5=12a5411f8948c82cc2f4dfdf3e490a20&pid=1-s2.0-S2095756424000795-main.pdf","citationCount":"0","resultStr":"{\"title\":\"O'Hare Airport roadway traffic prediction via data fusion and Gaussian process regression\",\"authors\":\"Damola M. Akinlana ,&nbsp;Arindam Fadikar ,&nbsp;Stefan M. Wild ,&nbsp;Natalia Zuniga-Garcia ,&nbsp;Joshua Auld\",\"doi\":\"10.1016/j.jtte.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes an approach of leveraging information gathered from multiple traffic data sources at different resolutions to obtain approximate inference on the traffic distribution of Chicago's O'Hare Airport area. Specifically, it proposes the ingestion of traffic datasets at different resolutions to build spatiotemporal models for predicting the distribution of traffic volume on the road network. Due to its good adaptability and flexibility for spatiotemporal data, the Gaussian process (GP) regression was employed to provide short-term forecasts using data collected by loop detectors (sensors) and supplemented by telematics data. The GP regression is used to make predictions of the distribution of the proportion of sensor data traffic volume represented by the telematics data for each location of the sensors. Consequently, the fitted GP model can be used to determine the approximate traffic distribution for a testing location outside of the training points. Policymakers in the transportation sector can find the results of this work helpful for making informed decisions relating to current and future transportation conditions in the area.</p></div>\",\"PeriodicalId\":47239,\"journal\":{\"name\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"volume\":\"11 4\",\"pages\":\"Pages 721-732\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000795/pdfft?md5=12a5411f8948c82cc2f4dfdf3e490a20&pid=1-s2.0-S2095756424000795-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000795\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000795","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种方法,即利用从不同分辨率的多个交通数据源收集到的信息,对芝加哥奥黑尔机场地区的交通流量分布进行近似推断。具体地说,它建议采用不同分辨率的交通数据集来建立时空模型,以预测道路网络上的交通量分布。由于高斯过程(GP)回归法对时空数据具有良好的适应性和灵活性,因此我们使用环路探测器(传感器)收集的数据并辅以远程信息处理数据来提供短期预测。GP 回归用于预测每个传感器位置的远程信息处理数据所代表的传感器数据交通量比例的分布情况。因此,拟合的 GP 模型可用于确定训练点以外测试位置的大致交通流量分布。交通部门的政策制定者可以发现,这项工作的成果有助于就该地区当前和未来的交通状况做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
O'Hare Airport roadway traffic prediction via data fusion and Gaussian process regression

This study proposes an approach of leveraging information gathered from multiple traffic data sources at different resolutions to obtain approximate inference on the traffic distribution of Chicago's O'Hare Airport area. Specifically, it proposes the ingestion of traffic datasets at different resolutions to build spatiotemporal models for predicting the distribution of traffic volume on the road network. Due to its good adaptability and flexibility for spatiotemporal data, the Gaussian process (GP) regression was employed to provide short-term forecasts using data collected by loop detectors (sensors) and supplemented by telematics data. The GP regression is used to make predictions of the distribution of the proportion of sensor data traffic volume represented by the telematics data for each location of the sensors. Consequently, the fitted GP model can be used to determine the approximate traffic distribution for a testing location outside of the training points. Policymakers in the transportation sector can find the results of this work helpful for making informed decisions relating to current and future transportation conditions in the area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.60
自引率
6.30%
发文量
402
审稿时长
15 weeks
期刊介绍: The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.
期刊最新文献
Potential applications for composite utilization of rubber and plastic in asphalt pavements: A critical review Design equations for maximum stress concentration factors for concrete-filled steel tubular K-joints A systematic review of digital twins for electric vehicles Architecture, application, and prospect of digital twin for highway infrastructure Assessing the risk of pedestrian crossing behavior on suburban roads using structural equation model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1