{"title":"预测水库滑坡阶梯状位移的变形机制辅助深度学习架构","authors":"","doi":"10.1016/j.jag.2024.104121","DOIUrl":null,"url":null,"abstract":"<div><p>Reservoir landslides in the Three Gorges Reservoir, China, exhibit prolonged slow motion and the potential for catastrophic events due to fluctuations in reservoir levels and intense rainfall episodes. Their distinct step-like deformation characteristics, involving rapid transformation processes of different states, pose challenges for accurate early warning and prediction. Previous forecasting models have often struggled with limited accuracy. This study introduces a mechanism-assisted deep learning model, leveraging the Informer architecture, to predict prolonged step-like reservoir landslide displacement. Utilizing a 15-year continuous monitoring dataset of the Baishuihe landslide, this model investigates the landslide mechanism, identifies influencing conditions underlying the step-wise behavior, and customizes input features for the prediction model by integrating optimized variational mode decomposition and wavelet analysis. Additionally, the dynamic correlation and hysteresis analysis between triggering factors and displacement offer valuable physical insights into the model and enhance the interpretability of the model. The model is further tailored to accommodate features of the monitoring dataset associated with landslide evolution by integrating a global multi-head attention mechanism and pooling layers, enabling the capture of both globe dependencies and local critical features of the model inputs. Through rigorous model training, performance evaluation, and tuning, the proposed model efficiently predicts step-wise landslide displacement, particularly during short-term rapid transitions between creep-mutation states.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224004758/pdfft?md5=c9666e70f98efa31c9ad9495fb63a794&pid=1-s2.0-S1569843224004758-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deformation mechanism-assisted deep learning architecture for predicting step-like displacement of reservoir landslide\",\"authors\":\"\",\"doi\":\"10.1016/j.jag.2024.104121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reservoir landslides in the Three Gorges Reservoir, China, exhibit prolonged slow motion and the potential for catastrophic events due to fluctuations in reservoir levels and intense rainfall episodes. Their distinct step-like deformation characteristics, involving rapid transformation processes of different states, pose challenges for accurate early warning and prediction. Previous forecasting models have often struggled with limited accuracy. This study introduces a mechanism-assisted deep learning model, leveraging the Informer architecture, to predict prolonged step-like reservoir landslide displacement. Utilizing a 15-year continuous monitoring dataset of the Baishuihe landslide, this model investigates the landslide mechanism, identifies influencing conditions underlying the step-wise behavior, and customizes input features for the prediction model by integrating optimized variational mode decomposition and wavelet analysis. Additionally, the dynamic correlation and hysteresis analysis between triggering factors and displacement offer valuable physical insights into the model and enhance the interpretability of the model. The model is further tailored to accommodate features of the monitoring dataset associated with landslide evolution by integrating a global multi-head attention mechanism and pooling layers, enabling the capture of both globe dependencies and local critical features of the model inputs. Through rigorous model training, performance evaluation, and tuning, the proposed model efficiently predicts step-wise landslide displacement, particularly during short-term rapid transitions between creep-mutation states.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004758/pdfft?md5=c9666e70f98efa31c9ad9495fb63a794&pid=1-s2.0-S1569843224004758-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224004758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Deformation mechanism-assisted deep learning architecture for predicting step-like displacement of reservoir landslide
Reservoir landslides in the Three Gorges Reservoir, China, exhibit prolonged slow motion and the potential for catastrophic events due to fluctuations in reservoir levels and intense rainfall episodes. Their distinct step-like deformation characteristics, involving rapid transformation processes of different states, pose challenges for accurate early warning and prediction. Previous forecasting models have often struggled with limited accuracy. This study introduces a mechanism-assisted deep learning model, leveraging the Informer architecture, to predict prolonged step-like reservoir landslide displacement. Utilizing a 15-year continuous monitoring dataset of the Baishuihe landslide, this model investigates the landslide mechanism, identifies influencing conditions underlying the step-wise behavior, and customizes input features for the prediction model by integrating optimized variational mode decomposition and wavelet analysis. Additionally, the dynamic correlation and hysteresis analysis between triggering factors and displacement offer valuable physical insights into the model and enhance the interpretability of the model. The model is further tailored to accommodate features of the monitoring dataset associated with landslide evolution by integrating a global multi-head attention mechanism and pooling layers, enabling the capture of both globe dependencies and local critical features of the model inputs. Through rigorous model training, performance evaluation, and tuning, the proposed model efficiently predicts step-wise landslide displacement, particularly during short-term rapid transitions between creep-mutation states.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.