DUS4L 通过 GRB2 调节 PI3K/AKT 和 ERK/MAPK 信号,抑制 LUAD 的侵袭和转移

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2024-08-30 DOI:10.1016/j.intimp.2024.113043
{"title":"DUS4L 通过 GRB2 调节 PI3K/AKT 和 ERK/MAPK 信号,抑制 LUAD 的侵袭和转移","authors":"","doi":"10.1016/j.intimp.2024.113043","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Limited research has focused on the role of dihydrouridine synthases (DUS) family members in human tumors. Our previous findings indicated an impact of dihydrouridine synthase 4 like (DUS4L) on cell proliferation and apoptosis in lung adenocarcinoma (LUAD) A549 cell, yet its broader functions and regulatory mechanisms in LUAD remain elusive.</p></div><div><h3>Methods</h3><p>Using a LUAD tissue microarray and immunohistochemical (IHC) staining, we validated variations in DUS4L protein expression levels among LUAD patients and assessed its clinical significance. Additional experiments using short hairpin RNA (shRNA) against DUS4L (sh-DUS4L-2), LUAD cell lines, cell function assays (including wound healing, transwell migration and invasion, colony formation, and apoptosis assays), and mouse tumor xenografts were performed to examine the biological roles of DUS4L in LUAD progression. RNA sequencing, proteomic analyses, mass spectrometry, and co-immunoprecipitation experiments were conducted to identify and validate DUS4L-regulated downstream target genes and signaling pathways.</p></div><div><h3>Results</h3><p>We identified a consistent upregulation of DUS4L in LUAD tissues. In vitro and in vivo experiments underscored the inhibitory effect of DUS4L downregulation on LUAD progression, including migration, invasion, and proliferation. Mechanistically, DUS4L was found to interact with the signaling molecule GRB2, promoting LUAD progression and metastasis by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK/MAPK pathways.</p></div><div><h3>Conclusion</h3><p>Our results establish the functional role of DUS4L in driving the progression and metastasis of LUAD, implicating its potential as a candidate therapeutic target for LUAD.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567576924015649/pdfft?md5=aa638c11e91724a24f2aad8c4b51d1c5&pid=1-s2.0-S1567576924015649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DUS4L suppresses invasion and metastasis in LUAD via modulation of PI3K/AKT and ERK/MAPK signaling through GRB2\",\"authors\":\"\",\"doi\":\"10.1016/j.intimp.2024.113043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Limited research has focused on the role of dihydrouridine synthases (DUS) family members in human tumors. Our previous findings indicated an impact of dihydrouridine synthase 4 like (DUS4L) on cell proliferation and apoptosis in lung adenocarcinoma (LUAD) A549 cell, yet its broader functions and regulatory mechanisms in LUAD remain elusive.</p></div><div><h3>Methods</h3><p>Using a LUAD tissue microarray and immunohistochemical (IHC) staining, we validated variations in DUS4L protein expression levels among LUAD patients and assessed its clinical significance. Additional experiments using short hairpin RNA (shRNA) against DUS4L (sh-DUS4L-2), LUAD cell lines, cell function assays (including wound healing, transwell migration and invasion, colony formation, and apoptosis assays), and mouse tumor xenografts were performed to examine the biological roles of DUS4L in LUAD progression. RNA sequencing, proteomic analyses, mass spectrometry, and co-immunoprecipitation experiments were conducted to identify and validate DUS4L-regulated downstream target genes and signaling pathways.</p></div><div><h3>Results</h3><p>We identified a consistent upregulation of DUS4L in LUAD tissues. In vitro and in vivo experiments underscored the inhibitory effect of DUS4L downregulation on LUAD progression, including migration, invasion, and proliferation. Mechanistically, DUS4L was found to interact with the signaling molecule GRB2, promoting LUAD progression and metastasis by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK/MAPK pathways.</p></div><div><h3>Conclusion</h3><p>Our results establish the functional role of DUS4L in driving the progression and metastasis of LUAD, implicating its potential as a candidate therapeutic target for LUAD.</p></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1567576924015649/pdfft?md5=aa638c11e91724a24f2aad8c4b51d1c5&pid=1-s2.0-S1567576924015649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924015649\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924015649","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的有关二氢尿苷合成酶(DUS)家族成员在人类肿瘤中作用的研究十分有限。我们之前的研究结果表明,二氢尿嘧啶合成酶 4 类似物(DUS4L)对肺腺癌(LUAD)A549 细胞的细胞增殖和凋亡有影响,但其在 LUAD 中更广泛的功能和调控机制仍不清楚。方法我们利用 LUAD 组织芯片和免疫组化(IHC)染色,验证了 LUAD 患者中 DUS4L 蛋白表达水平的变化,并评估了其临床意义。我们还使用针对 DUS4L 的短发夹 RNA (shRNA)(sh-DUS4L-2)、LUAD 细胞系、细胞功能测试(包括伤口愈合、经孔迁移和侵袭、集落形成和细胞凋亡测试)以及小鼠肿瘤异种移植进行了其他实验,以研究 DUS4L 在 LUAD 进展中的生物学作用。研究人员进行了 RNA 测序、蛋白质组分析、质谱分析和共免疫沉淀实验,以鉴定和验证 DUS4L 调控的下游靶基因和信号通路。体外和体内实验强调了下调 DUS4L 对 LUAD 进展(包括迁移、侵袭和增殖)的抑制作用。从机制上讲,研究发现 DUS4L 与信号分子 GRB2 相互作用,通过 PI3K/AKT 和 ERK/MAPK 通路诱导上皮-间质转化(EMT),从而促进 LUAD 的进展和转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DUS4L suppresses invasion and metastasis in LUAD via modulation of PI3K/AKT and ERK/MAPK signaling through GRB2

Objective

Limited research has focused on the role of dihydrouridine synthases (DUS) family members in human tumors. Our previous findings indicated an impact of dihydrouridine synthase 4 like (DUS4L) on cell proliferation and apoptosis in lung adenocarcinoma (LUAD) A549 cell, yet its broader functions and regulatory mechanisms in LUAD remain elusive.

Methods

Using a LUAD tissue microarray and immunohistochemical (IHC) staining, we validated variations in DUS4L protein expression levels among LUAD patients and assessed its clinical significance. Additional experiments using short hairpin RNA (shRNA) against DUS4L (sh-DUS4L-2), LUAD cell lines, cell function assays (including wound healing, transwell migration and invasion, colony formation, and apoptosis assays), and mouse tumor xenografts were performed to examine the biological roles of DUS4L in LUAD progression. RNA sequencing, proteomic analyses, mass spectrometry, and co-immunoprecipitation experiments were conducted to identify and validate DUS4L-regulated downstream target genes and signaling pathways.

Results

We identified a consistent upregulation of DUS4L in LUAD tissues. In vitro and in vivo experiments underscored the inhibitory effect of DUS4L downregulation on LUAD progression, including migration, invasion, and proliferation. Mechanistically, DUS4L was found to interact with the signaling molecule GRB2, promoting LUAD progression and metastasis by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK/MAPK pathways.

Conclusion

Our results establish the functional role of DUS4L in driving the progression and metastasis of LUAD, implicating its potential as a candidate therapeutic target for LUAD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
Corrigendum to "mTOR aggravated CD4+ T cell pyroptosis by regulating the PPARγ-Nrf2 pathway in sepsis" [Int. Immunopharmacol. 140 (2024) 112822]. Corrigendum to "Role of glucose metabolism reprogramming in keratinocytes in the link between psoriasis and metabolic syndrome" [Int. Immunopharmacol. 139 (2024) 112704]. Isoamericanin A ameliorates neuronal damage and alleviates vascular cognitive impairments by inhibiting oxidative stress through activation of the Nrf2 pathway. Neuroprotective effects of gypenosides on LPS-induced anxiety and depression-like behaviors. Corrigendum to "Artesunate ameliorates ligature-induced periodontitis by attenuating NLRP3 inflammasome-mediated osteoclastogenesis and enhancing osteogenic differentiation" [Int. Immunopharmacol. 123 (2023) 110749].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1