ShapeBench:为本地三维形状描述符设定基准的新方法

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-08-22 DOI:10.1016/j.cag.2024.104052
Bart Iver van Blokland
{"title":"ShapeBench:为本地三维形状描述符设定基准的新方法","authors":"Bart Iver van Blokland","doi":"10.1016/j.cag.2024.104052","DOIUrl":null,"url":null,"abstract":"<div><p>The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104052"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097849324001870/pdfft?md5=5829ea110e365c2d20b6d416c88f685a&pid=1-s2.0-S0097849324001870-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ShapeBench: A new approach to benchmarking local 3D shape descriptors\",\"authors\":\"Bart Iver van Blokland\",\"doi\":\"10.1016/j.cag.2024.104052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104052\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001870/pdfft?md5=5829ea110e365c2d20b6d416c88f685a&pid=1-s2.0-S0097849324001870-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001870\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001870","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

ShapeBench 评估方法是对常用的精确度-召回曲线下面积(PRC/AUC)的扩展,用于测量局部三维形状描述符的匹配性能。据观察,PRC 在确定候选匹配是否为真匹配时,没有充分考虑相同或不同对象中的其他类似表面。为解决这一局限性,我们引入了新颖的描述符距离指数(DDI)指标。与以往识别给定场景中整个物体的评估方法不同,DDI 指标通过分析点到点的距离来衡量描述符的性能。此外,ShapeBench 方法通过使用程序生成,比以前的方法更具可扩展性。该基准可用于评估新旧描述符。该基准实施所产生的结果完全可以复制,并已公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ShapeBench: A new approach to benchmarking local 3D shape descriptors

The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1