{"title":"ShapeBench:为本地三维形状描述符设定基准的新方法","authors":"Bart Iver van Blokland","doi":"10.1016/j.cag.2024.104052","DOIUrl":null,"url":null,"abstract":"<div><p>The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104052"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097849324001870/pdfft?md5=5829ea110e365c2d20b6d416c88f685a&pid=1-s2.0-S0097849324001870-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ShapeBench: A new approach to benchmarking local 3D shape descriptors\",\"authors\":\"Bart Iver van Blokland\",\"doi\":\"10.1016/j.cag.2024.104052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104052\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001870/pdfft?md5=5829ea110e365c2d20b6d416c88f685a&pid=1-s2.0-S0097849324001870-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001870\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001870","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
ShapeBench: A new approach to benchmarking local 3D shape descriptors
The ShapeBench evaluation methodology is proposed as an extension to the popular Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching performance of local 3D shape descriptors. It is observed that the PRC inadequately accounts for other similar surfaces in the same or different objects when determining whether a candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is introduced to address this limitation. In contrast to previous evaluation methodologies, which identify entire objects in a given scene, the DDI metric measures descriptor performance by analysing point-to-point distances. The ShapeBench methodology is also more scalable than previous approaches, by using procedural generation. The benchmark is used to evaluate both old and new descriptors. The results produced by the implementation of the benchmark are fully replicable, and are made publicly available.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.