Yi Du , Xiya Chen , Weiji Chen , Gang Chen , Xiaoling Cheng , Hailing Wang , Ling Guo , Chenyang Li , Dahong Yao
{"title":"用于治疗三阴性乳腺癌的新型 PAK1 降解剂的设计、合成和生物学评价","authors":"Yi Du , Xiya Chen , Weiji Chen , Gang Chen , Xiaoling Cheng , Hailing Wang , Ling Guo , Chenyang Li , Dahong Yao","doi":"10.1016/j.bmc.2024.117896","DOIUrl":null,"url":null,"abstract":"<div><p>Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, <strong>19s</strong>, can significantly degrade PAK1 protein at concentrations as low as 0.1 μM, and achieves potent anti-proliferative activity with an IC<sub>50</sub> value of 1.27 μM in MDA-MB-231 cells. Additionally, <strong>19s</strong> exhibits potent anti-migration activity <em>in vitro</em> and induces rapid tumor regression <em>in vivo</em>. Collectively, these findings document that <strong>19s</strong> is a potent and novel PAK1 degrader with promising potential for TNBC treatment.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"112 ","pages":"Article 117896"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer\",\"authors\":\"Yi Du , Xiya Chen , Weiji Chen , Gang Chen , Xiaoling Cheng , Hailing Wang , Ling Guo , Chenyang Li , Dahong Yao\",\"doi\":\"10.1016/j.bmc.2024.117896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, <strong>19s</strong>, can significantly degrade PAK1 protein at concentrations as low as 0.1 μM, and achieves potent anti-proliferative activity with an IC<sub>50</sub> value of 1.27 μM in MDA-MB-231 cells. Additionally, <strong>19s</strong> exhibits potent anti-migration activity <em>in vitro</em> and induces rapid tumor regression <em>in vivo</em>. Collectively, these findings document that <strong>19s</strong> is a potent and novel PAK1 degrader with promising potential for TNBC treatment.</p></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"112 \",\"pages\":\"Article 117896\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624003109\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer
Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, 19s, can significantly degrade PAK1 protein at concentrations as low as 0.1 μM, and achieves potent anti-proliferative activity with an IC50 value of 1.27 μM in MDA-MB-231 cells. Additionally, 19s exhibits potent anti-migration activity in vitro and induces rapid tumor regression in vivo. Collectively, these findings document that 19s is a potent and novel PAK1 degrader with promising potential for TNBC treatment.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.