Cunsheng Wei , Tianming Wang , Rongfen Shi , Xiaorong Yu , Junying Jiang , Yuan Chen , Meng Cao , Xuemei Chen
{"title":"巨噬细胞清道夫受体 1 通过 HRH1 介导的小胶质细胞吞噬作用减轻缺血性白质损伤","authors":"Cunsheng Wei , Tianming Wang , Rongfen Shi , Xiaorong Yu , Junying Jiang , Yuan Chen , Meng Cao , Xuemei Chen","doi":"10.1016/j.neulet.2024.137952","DOIUrl":null,"url":null,"abstract":"<div><p>The removal of axonal and myelin debris by macrophages is crucial for safeguarding nerves and facilitating functional recuperation in cerebral ischemic stroke. However, the physiological function of macrophage scavenger receptor 1 (MSR1) in ischemic white matter injury remains poorly de-fined. In this study, we observed an elevation in Msr1 expression levels in mice with experimental cerebral ischemic stroke. Msr 1-deficient (Msr1-/-) mice exhibited exacerbated behavioral deficits and aggravated white matter injury after ischemic stroke. Furthermore, the overexpression of Msr1 led to an increase in the phosphorylation of Akt via Hrh1, which in turn expedited the clearance of myelin debris through the PI3K/AKT pathway. In conclusion, our findings underscore the essential role of MSR1 in microglial phagocytosis and its ability to mitigate ischemic white matter injury in cerebral ischemic stroke.</p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage Scavenger Receptor 1 attenuates ischemic white matter injury via HRH1-mediated microglial phagocytosis\",\"authors\":\"Cunsheng Wei , Tianming Wang , Rongfen Shi , Xiaorong Yu , Junying Jiang , Yuan Chen , Meng Cao , Xuemei Chen\",\"doi\":\"10.1016/j.neulet.2024.137952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The removal of axonal and myelin debris by macrophages is crucial for safeguarding nerves and facilitating functional recuperation in cerebral ischemic stroke. However, the physiological function of macrophage scavenger receptor 1 (MSR1) in ischemic white matter injury remains poorly de-fined. In this study, we observed an elevation in Msr1 expression levels in mice with experimental cerebral ischemic stroke. Msr 1-deficient (Msr1-/-) mice exhibited exacerbated behavioral deficits and aggravated white matter injury after ischemic stroke. Furthermore, the overexpression of Msr1 led to an increase in the phosphorylation of Akt via Hrh1, which in turn expedited the clearance of myelin debris through the PI3K/AKT pathway. In conclusion, our findings underscore the essential role of MSR1 in microglial phagocytosis and its ability to mitigate ischemic white matter injury in cerebral ischemic stroke.</p></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024003306\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Macrophage Scavenger Receptor 1 attenuates ischemic white matter injury via HRH1-mediated microglial phagocytosis
The removal of axonal and myelin debris by macrophages is crucial for safeguarding nerves and facilitating functional recuperation in cerebral ischemic stroke. However, the physiological function of macrophage scavenger receptor 1 (MSR1) in ischemic white matter injury remains poorly de-fined. In this study, we observed an elevation in Msr1 expression levels in mice with experimental cerebral ischemic stroke. Msr 1-deficient (Msr1-/-) mice exhibited exacerbated behavioral deficits and aggravated white matter injury after ischemic stroke. Furthermore, the overexpression of Msr1 led to an increase in the phosphorylation of Akt via Hrh1, which in turn expedited the clearance of myelin debris through the PI3K/AKT pathway. In conclusion, our findings underscore the essential role of MSR1 in microglial phagocytosis and its ability to mitigate ischemic white matter injury in cerebral ischemic stroke.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.