Carolina Rodrigues dos Santos , Guilherme Otávio Rosa e Silva , Camila de Figueiredo Valias , Lucilaine Valéria de Souza Santos , Míriam Cristina Santos Amaral
{"title":"七种药物活性化合物的生态毒理学研究:混合物效应和环境风险评估","authors":"Carolina Rodrigues dos Santos , Guilherme Otávio Rosa e Silva , Camila de Figueiredo Valias , Lucilaine Valéria de Souza Santos , Míriam Cristina Santos Amaral","doi":"10.1016/j.aquatox.2024.107068","DOIUrl":null,"url":null,"abstract":"<div><p>Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC<sub>50</sub> of 0.32 mg L<sup>-1</sup>, 6.15 mg L<sup>-1</sup> and 36.8 mg L<sup>-1</sup>, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecotoxicological study of seven pharmaceutically active compounds: Mixture effects and environmental risk assessment\",\"authors\":\"Carolina Rodrigues dos Santos , Guilherme Otávio Rosa e Silva , Camila de Figueiredo Valias , Lucilaine Valéria de Souza Santos , Míriam Cristina Santos Amaral\",\"doi\":\"10.1016/j.aquatox.2024.107068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC<sub>50</sub> of 0.32 mg L<sup>-1</sup>, 6.15 mg L<sup>-1</sup> and 36.8 mg L<sup>-1</sup>, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002388\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002388","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
由于低浓度的 PhACs 会对水生生态系统造成不利影响,因此在多个水生区划中都检测到了 PhACs,这引起了环境问题的关注。尽管在地表水中检测到的 PhACs 种类繁多,但对其中许多物质(主要是其混合物)的生态毒理学研究并不存在。此外,水体可能会持续接受含有微污染物的原废水或经处理的废水的排放。因此,PhACs 会发生混合和相互作用,从而增强或降低其毒性。因此,本研究评估了七种 PhACs 对鱼腥臭藻的毒性。本研究评估了 PhACs 的单独作用以及二元和三元混合物的作用。此外,还将实验效果与浓度添加(CA)和独立作用(IA)模型进行了比较。最后,还进行了环境风险评估。非诺贝特(FEN)、氯雷他定(LOR)和酮洛芬(KET)的毒性最大,EC50 分别为 0.32 毫克/升-1、6.15 毫克/升-1 和 36.8 毫克/升-1。在 FEN + LOR、KET + LOR 和 KET + FEN + LOR 中观察到了协同效应,这表明 CA 和 IA 可能低估了毒性。在多个地点,KET 对藻类的环境风险以及 LOR e 17α-ethynylestradiol (EE2) 对甲壳类动物和鱼类的环境风险都很高。此外,要达到降低 KET 和 LOR 风险商数所需的浓度,还需要废水处理技术的高去除率。因此,这项研究有助于更好地了解 PhACs 的毒性相互作用和环境风险。
Ecotoxicological study of seven pharmaceutically active compounds: Mixture effects and environmental risk assessment
Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC50 of 0.32 mg L-1, 6.15 mg L-1 and 36.8 mg L-1, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.