MXenes 纳米层中应变可调的电子和光学吸收:DFT 方法

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-08-28 DOI:10.1016/j.jssc.2024.124975
{"title":"MXenes 纳米层中应变可调的电子和光学吸收:DFT 方法","authors":"","doi":"10.1016/j.jssc.2024.124975","DOIUrl":null,"url":null,"abstract":"<div><p>Computational simulations using density functional theory (DFT) were performed to show that biaxial strain engineering within the range of −8% to +8% is an effective method for modifying the fundamental properties of two-dimensional (2D) transition metal carbides (MXenes). In this work, we computationally explored the effect of both compressive (0 to −8%) and tensile (0 to +8%) strain on the structural, electronic, and optical properties of M<sub>2</sub>CO<sub>2</sub> MXenes (M = Ti, Zr, Sc and Hf) nanolayers. When compressive strains are applied, the charge transfer between layers increases because of decreased interlayer coupling. Conversely, tensile strains result in the opposite behavior. The strain-tunable band gap effect in Mo<sub>2</sub>CO<sub>2</sub> nanolayers is revealed by investigating the valence band maximum (VBM) and conduction band minimum (CBM) in the band structure under biaxial strain. It is observed that the indirect-to-direct band gap transition occurs when the tensile strain is applied to Sc<sub>2</sub>CO<sub>2</sub> and Ti<sub>2</sub>CO<sub>2</sub> nanolayers. In most samples, the energy gap increases with an increase in tensile strain and decreases with an increase in compressive strain. The optical absorption coefficient indicates considerable absorption in the visible to ultraviolet (UV) region. Additionally, the absorption can be influenced by biaxial strains. In particular, under compressive strains (−8%) and Z-polarized light, the UV absorption peak in Hf<sub>2</sub>CO<sub>2</sub>, Ti<sub>2</sub>CO<sub>2</sub>, and Zr<sub>2</sub>CO<sub>2</sub> reaches 68 %, 78 %, and 113 % respectively. The results indicate that these M<sub>2</sub>CO<sub>2</sub> MXenes nanolayers will have significant potential for applications in tunable optoelectronic devices.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-tunable electronic and optical absorption in the MXenes nanolayers: A DFT approach\",\"authors\":\"\",\"doi\":\"10.1016/j.jssc.2024.124975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computational simulations using density functional theory (DFT) were performed to show that biaxial strain engineering within the range of −8% to +8% is an effective method for modifying the fundamental properties of two-dimensional (2D) transition metal carbides (MXenes). In this work, we computationally explored the effect of both compressive (0 to −8%) and tensile (0 to +8%) strain on the structural, electronic, and optical properties of M<sub>2</sub>CO<sub>2</sub> MXenes (M = Ti, Zr, Sc and Hf) nanolayers. When compressive strains are applied, the charge transfer between layers increases because of decreased interlayer coupling. Conversely, tensile strains result in the opposite behavior. The strain-tunable band gap effect in Mo<sub>2</sub>CO<sub>2</sub> nanolayers is revealed by investigating the valence band maximum (VBM) and conduction band minimum (CBM) in the band structure under biaxial strain. It is observed that the indirect-to-direct band gap transition occurs when the tensile strain is applied to Sc<sub>2</sub>CO<sub>2</sub> and Ti<sub>2</sub>CO<sub>2</sub> nanolayers. In most samples, the energy gap increases with an increase in tensile strain and decreases with an increase in compressive strain. The optical absorption coefficient indicates considerable absorption in the visible to ultraviolet (UV) region. Additionally, the absorption can be influenced by biaxial strains. In particular, under compressive strains (−8%) and Z-polarized light, the UV absorption peak in Hf<sub>2</sub>CO<sub>2</sub>, Ti<sub>2</sub>CO<sub>2</sub>, and Zr<sub>2</sub>CO<sub>2</sub> reaches 68 %, 78 %, and 113 % respectively. The results indicate that these M<sub>2</sub>CO<sub>2</sub> MXenes nanolayers will have significant potential for applications in tunable optoelectronic devices.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004298\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004298","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论(DFT)进行的计算模拟表明,-8% 至 +8% 范围内的双轴应变工程是改变二维(2D)过渡金属碳化物(MXenes)基本特性的有效方法。在这项工作中,我们通过计算探索了压缩应变(0 至 -8%)和拉伸应变(0 至 +8%)对 M2CO2 MXenes(M = Ti、Zr、Sc 和 Hf)纳米层的结构、电子和光学特性的影响。施加压缩应变时,由于层间耦合减少,层间电荷转移增加。相反,拉伸应变则导致相反的行为。通过研究双轴应变下带结构中价带最大值(VBM)和导带最小值(CBM),揭示了 Mo2CO2 纳米层中应变可调的带隙效应。研究发现,当对 Sc2CO2 和 Ti2CO2 纳米层施加拉伸应变时,会发生间接到直接的带隙转变。在大多数样品中,能隙随着拉伸应变的增加而增大,随着压缩应变的增加而减小。光学吸收系数表明在可见光到紫外线(UV)区域有相当大的吸收。此外,吸收还受到双轴应变的影响。特别是在压缩应变(-8%)和 Z 偏振光下,Hf2CO2、Ti2CO2 和 Zr2CO2 的紫外线吸收峰值分别达到 68%、78% 和 113%。结果表明,这些 M2CO2 MXenes 纳米层在可调谐光电器件中的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strain-tunable electronic and optical absorption in the MXenes nanolayers: A DFT approach

Computational simulations using density functional theory (DFT) were performed to show that biaxial strain engineering within the range of −8% to +8% is an effective method for modifying the fundamental properties of two-dimensional (2D) transition metal carbides (MXenes). In this work, we computationally explored the effect of both compressive (0 to −8%) and tensile (0 to +8%) strain on the structural, electronic, and optical properties of M2CO2 MXenes (M = Ti, Zr, Sc and Hf) nanolayers. When compressive strains are applied, the charge transfer between layers increases because of decreased interlayer coupling. Conversely, tensile strains result in the opposite behavior. The strain-tunable band gap effect in Mo2CO2 nanolayers is revealed by investigating the valence band maximum (VBM) and conduction band minimum (CBM) in the band structure under biaxial strain. It is observed that the indirect-to-direct band gap transition occurs when the tensile strain is applied to Sc2CO2 and Ti2CO2 nanolayers. In most samples, the energy gap increases with an increase in tensile strain and decreases with an increase in compressive strain. The optical absorption coefficient indicates considerable absorption in the visible to ultraviolet (UV) region. Additionally, the absorption can be influenced by biaxial strains. In particular, under compressive strains (−8%) and Z-polarized light, the UV absorption peak in Hf2CO2, Ti2CO2, and Zr2CO2 reaches 68 %, 78 %, and 113 % respectively. The results indicate that these M2CO2 MXenes nanolayers will have significant potential for applications in tunable optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Structural features of the products based on potassium polytitanate modified in aqueous solutions of ferric sulfate The role of crystallographic orientation on surface properties and ion transport in lithium germanate (Li2GeO3) anodes: A computational approach Stability under electron irradiation of some layered hydrated minerals Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation A fluorinated star-shaped covalent organic framework for efficient iodine adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1