{"title":"3-羟基丁酸 2-(3,4-二羟基苯基)乙酯(HTHB)通过调节衰老加速小鼠易感基因 8(SAMP8)小鼠的肠道微生物群改善认知功能障碍","authors":"Le Shi, Peipei Gao, Yue Zhang, Quanyu Liu, Ranrui Hu, Zhuang Zhao, Yachong Hu, Xiaohong Xu, Yehua Shen, Jiankang Liu, Jiangang Long","doi":"10.1093/gerona/glae220","DOIUrl":null,"url":null,"abstract":"Numerous studies have indicated a close association between gut microbiota dysbiosis, inflammation, and cognitive impairment, highlighting their crucial role in the aging process. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB), a novel derivative of hydroxytryrosol (HT), known for its metabolic and anti-inflammatory properties, was investigated for its effects on memory, inflammation, and gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. The study employed behavioral testing, biochemical detection and 16S RNA analysis. Results revealed that HTHB mitigated memory decline and lymphocyte aberrance, reduced inflammation in the brain cortex, intestine and peripheral system, and modulated gut microbiota dysbiosis. Interestingly, the cognitive function and serum inflammation of mice significantly correlated with differences in gut microbiota in SAMP8 mice. Furthermore, HTHB treatment exhibited an enhancement of gut barrier integrity in colon tissue in SAMP8 mice. In vitro experiments using HCT116 and DLD1 cells further evidenced that HTHB rescued the tight junction protein levels impaired by lipopolysaccharide (LPS). These finding demonstrate that HTHB effectively ameliorates cognitive dysfunction in aged mice, might by modulating gut microbiota, suppressing inflammation and promoting intestinal barrier integrity. This highlights the potential of HTHB as a therapeutic agent for age-related cognitive loss.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-(3,4-dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB) ameliorates cognitive dysfunction via modulating gut microbiota in aged senescence-accelerated mouse prone 8 (SAMP8) mice\",\"authors\":\"Le Shi, Peipei Gao, Yue Zhang, Quanyu Liu, Ranrui Hu, Zhuang Zhao, Yachong Hu, Xiaohong Xu, Yehua Shen, Jiankang Liu, Jiangang Long\",\"doi\":\"10.1093/gerona/glae220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies have indicated a close association between gut microbiota dysbiosis, inflammation, and cognitive impairment, highlighting their crucial role in the aging process. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB), a novel derivative of hydroxytryrosol (HT), known for its metabolic and anti-inflammatory properties, was investigated for its effects on memory, inflammation, and gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. The study employed behavioral testing, biochemical detection and 16S RNA analysis. Results revealed that HTHB mitigated memory decline and lymphocyte aberrance, reduced inflammation in the brain cortex, intestine and peripheral system, and modulated gut microbiota dysbiosis. Interestingly, the cognitive function and serum inflammation of mice significantly correlated with differences in gut microbiota in SAMP8 mice. Furthermore, HTHB treatment exhibited an enhancement of gut barrier integrity in colon tissue in SAMP8 mice. In vitro experiments using HCT116 and DLD1 cells further evidenced that HTHB rescued the tight junction protein levels impaired by lipopolysaccharide (LPS). These finding demonstrate that HTHB effectively ameliorates cognitive dysfunction in aged mice, might by modulating gut microbiota, suppressing inflammation and promoting intestinal barrier integrity. This highlights the potential of HTHB as a therapeutic agent for age-related cognitive loss.\",\"PeriodicalId\":22892,\"journal\":{\"name\":\"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glae220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2-(3,4-dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB) ameliorates cognitive dysfunction via modulating gut microbiota in aged senescence-accelerated mouse prone 8 (SAMP8) mice
Numerous studies have indicated a close association between gut microbiota dysbiosis, inflammation, and cognitive impairment, highlighting their crucial role in the aging process. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB), a novel derivative of hydroxytryrosol (HT), known for its metabolic and anti-inflammatory properties, was investigated for its effects on memory, inflammation, and gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. The study employed behavioral testing, biochemical detection and 16S RNA analysis. Results revealed that HTHB mitigated memory decline and lymphocyte aberrance, reduced inflammation in the brain cortex, intestine and peripheral system, and modulated gut microbiota dysbiosis. Interestingly, the cognitive function and serum inflammation of mice significantly correlated with differences in gut microbiota in SAMP8 mice. Furthermore, HTHB treatment exhibited an enhancement of gut barrier integrity in colon tissue in SAMP8 mice. In vitro experiments using HCT116 and DLD1 cells further evidenced that HTHB rescued the tight junction protein levels impaired by lipopolysaccharide (LPS). These finding demonstrate that HTHB effectively ameliorates cognitive dysfunction in aged mice, might by modulating gut microbiota, suppressing inflammation and promoting intestinal barrier integrity. This highlights the potential of HTHB as a therapeutic agent for age-related cognitive loss.