Tom Demeulemeester , Dries Goossens , Ben Hermans , Roel Leus
{"title":"二分偏好和万有偏好下的公平整数程序设计","authors":"Tom Demeulemeester , Dries Goossens , Ben Hermans , Roel Leus","doi":"10.1016/j.ejor.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><div>One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with <em>dichotomous</em> preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have <em>cardinal</em> preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"320 3","pages":"Pages 465-478"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair integer programming under dichotomous and cardinal preferences\",\"authors\":\"Tom Demeulemeester , Dries Goossens , Ben Hermans , Roel Leus\",\"doi\":\"10.1016/j.ejor.2024.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with <em>dichotomous</em> preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have <em>cardinal</em> preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"320 3\",\"pages\":\"Pages 465-478\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037722172400660X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037722172400660X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Fair integer programming under dichotomous and cardinal preferences
One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have cardinal preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.