二分偏好和万有偏好下的公平整数程序设计

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2024-08-24 DOI:10.1016/j.ejor.2024.08.023
Tom Demeulemeester , Dries Goossens , Ben Hermans , Roel Leus
{"title":"二分偏好和万有偏好下的公平整数程序设计","authors":"Tom Demeulemeester ,&nbsp;Dries Goossens ,&nbsp;Ben Hermans ,&nbsp;Roel Leus","doi":"10.1016/j.ejor.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><div>One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with <em>dichotomous</em> preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have <em>cardinal</em> preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"320 3","pages":"Pages 465-478"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair integer programming under dichotomous and cardinal preferences\",\"authors\":\"Tom Demeulemeester ,&nbsp;Dries Goossens ,&nbsp;Ben Hermans ,&nbsp;Roel Leus\",\"doi\":\"10.1016/j.ejor.2024.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with <em>dichotomous</em> preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have <em>cardinal</em> preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"320 3\",\"pages\":\"Pages 465-478\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037722172400660X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037722172400660X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

除非控制(可能有很多)最优解的选择概率,否则就无法利用整数线性程序做出真正公平的决策。为此,我们提出了一个统一的框架,当二进制决策变量代表具有偏好的代理时,代理只关心他们是否在最终解决方案中被选中。我们开发了几种通用算法来公平地选择最优解,例如,通过最大化纳什乘积或最小选择概率,或使用代理的随机排序作为选择标准(随机序列独裁)。我们还详细讨论了如何在代理具有偏好的情况下扩展所提出的方法。因此,我们将求解整数线性规划的 "黑箱 "程序嵌入到一个从头到尾都可以解释的框架中。最后,我们在两个具体应用中对所提出的方法进行了评估,即肾脏交换(二分偏好)和单机总迟到时间最小化的调度问题(红心偏好)。我们发现,在所评估的福利标准上,纳什乘积最大化或选择概率最小化的方法优于其他方法,而随机序列独裁等方法的计算时间与寻找单一最优解的计算时间相近,表现相当不错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fair integer programming under dichotomous and cardinal preferences
One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have cardinal preferences. As such, we embed the “black-box” procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
Editorial Board Bi-objective ranking and selection using stochastic kriging Single-machine preemptive scheduling with assignable due dates or assignable weights to minimize total weighted late work Measuring carbon emission performance in China's energy market: Evidence from improved non-radial directional distance function data envelopment analysis A general valuation framework for rough stochastic local volatility models and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1