Zhihong Zhang, Runzhao Yang, Jinli Suo, Yuxiao Cheng, Qionghai Dai
{"title":"基于编码曝光和视频内隐神经表征的轻量级高速摄影技术","authors":"Zhihong Zhang, Runzhao Yang, Jinli Suo, Yuxiao Cheng, Qionghai Dai","doi":"10.1007/s11263-024-02198-1","DOIUrl":null,"url":null,"abstract":"<p>The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing. However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms. To address this challenge, leveraging a coded exposure setup to encode a frame sequence into a blurry snapshot and subsequently retrieve the latent sharp video presents a lightweight solution. Nevertheless, restoring motion from blur remains a formidable challenge due to the inherent ill-posedness of motion blur decomposition, the intrinsic ambiguity in motion direction, and the diverse motions present in natural videos. In this study, we propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos. We strategically embed motion direction cues into the blurry image during the imaging process. Additionally, we develop a novel implicit neural representation based blur decomposition network to sequentially extract the latent video frames from the blurry image, leveraging the embedded motion direction cues. To validate the effectiveness and efficiency of our proposed framework, we conduct extensive experiments using benchmark datasets and real-captured blurry images. The results demonstrate that our approach significantly outperforms existing methods in terms of both quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"55 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos\",\"authors\":\"Zhihong Zhang, Runzhao Yang, Jinli Suo, Yuxiao Cheng, Qionghai Dai\",\"doi\":\"10.1007/s11263-024-02198-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing. However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms. To address this challenge, leveraging a coded exposure setup to encode a frame sequence into a blurry snapshot and subsequently retrieve the latent sharp video presents a lightweight solution. Nevertheless, restoring motion from blur remains a formidable challenge due to the inherent ill-posedness of motion blur decomposition, the intrinsic ambiguity in motion direction, and the diverse motions present in natural videos. In this study, we propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos. We strategically embed motion direction cues into the blurry image during the imaging process. Additionally, we develop a novel implicit neural representation based blur decomposition network to sequentially extract the latent video frames from the blurry image, leveraging the embedded motion direction cues. To validate the effectiveness and efficiency of our proposed framework, we conduct extensive experiments using benchmark datasets and real-captured blurry images. The results demonstrate that our approach significantly outperforms existing methods in terms of both quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02198-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02198-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos
The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing. However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms. To address this challenge, leveraging a coded exposure setup to encode a frame sequence into a blurry snapshot and subsequently retrieve the latent sharp video presents a lightweight solution. Nevertheless, restoring motion from blur remains a formidable challenge due to the inherent ill-posedness of motion blur decomposition, the intrinsic ambiguity in motion direction, and the diverse motions present in natural videos. In this study, we propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos. We strategically embed motion direction cues into the blurry image during the imaging process. Additionally, we develop a novel implicit neural representation based blur decomposition network to sequentially extract the latent video frames from the blurry image, leveraging the embedded motion direction cues. To validate the effectiveness and efficiency of our proposed framework, we conduct extensive experiments using benchmark datasets and real-captured blurry images. The results demonstrate that our approach significantly outperforms existing methods in terms of both quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.