贝叶斯优化(BOA):一个可访问的、用户友好的贝叶斯优化开源框架

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-08-24 DOI:10.1016/j.envsoft.2024.106191
Madeline E. Scyphers , Justine E.C. Missik , Haley Kujawa , Joel A. Paulson , Gil Bohrer
{"title":"贝叶斯优化(BOA):一个可访问的、用户友好的贝叶斯优化开源框架","authors":"Madeline E. Scyphers ,&nbsp;Justine E.C. Missik ,&nbsp;Haley Kujawa ,&nbsp;Joel A. Paulson ,&nbsp;Gil Bohrer","doi":"10.1016/j.envsoft.2024.106191","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce Bayesian Optimization for Anything (BOA), a high-level Bayesian Optimization (BO) framework and model wrapping toolkit, which presents a novel approach to simplifying BO, with the goal of making it more accessible and user-friendly, particularly for those with limited expertise in the field. BOA addresses common barriers in implementing BO, focusing on ease of use, reducing the need for deep domain knowledge, and cutting down on extensive coding requirements. A notable feature of BOA is its language-agnostic architecture, which facilitates broader application in various fields and to a wider audience. We showcase BOA's application through three examples: a high-dimensional optimization with 184 parameters of the SWAT + watershed model, a highly parallelized optimization of this intrinsically non-parallel model, and a multi-objective optimization of the FETCH Tree-Crown Hydrodynamics model. These test cases illustrate BOA's effectiveness in addressing complex optimization challenges in diverse scenarios.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"182 ","pages":"Article 106191"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Optimization for Anything (BOA): An open-source framework for accessible, user-friendly Bayesian optimization\",\"authors\":\"Madeline E. Scyphers ,&nbsp;Justine E.C. Missik ,&nbsp;Haley Kujawa ,&nbsp;Joel A. Paulson ,&nbsp;Gil Bohrer\",\"doi\":\"10.1016/j.envsoft.2024.106191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce Bayesian Optimization for Anything (BOA), a high-level Bayesian Optimization (BO) framework and model wrapping toolkit, which presents a novel approach to simplifying BO, with the goal of making it more accessible and user-friendly, particularly for those with limited expertise in the field. BOA addresses common barriers in implementing BO, focusing on ease of use, reducing the need for deep domain knowledge, and cutting down on extensive coding requirements. A notable feature of BOA is its language-agnostic architecture, which facilitates broader application in various fields and to a wider audience. We showcase BOA's application through three examples: a high-dimensional optimization with 184 parameters of the SWAT + watershed model, a highly parallelized optimization of this intrinsically non-parallel model, and a multi-objective optimization of the FETCH Tree-Crown Hydrodynamics model. These test cases illustrate BOA's effectiveness in addressing complex optimization challenges in diverse scenarios.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"182 \",\"pages\":\"Article 106191\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002524\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002524","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的贝叶斯优化(BOA)是一种高级贝叶斯优化(BO)框架和模型封装工具包,它提出了一种简化贝叶斯优化的新方法,目的是使贝叶斯优化更易于访问和使用,特别是对于那些在该领域专业知识有限的人。BOA 解决了实施 BO 过程中的常见障碍,重点在于易用性、减少对深厚领域知识的需求,以及减少大量的编码要求。BOA 的一个显著特点是其与语言无关的架构,这有利于它在各个领域的广泛应用和更广泛的受众。我们通过三个实例展示了 BOA 的应用:SWAT + 流域模型 184 个参数的高维优化、这一本质上非并行模型的高度并行化优化,以及 FETCH 树冠水动力学模型的多目标优化。这些测试案例表明,BOA 能够有效地应对各种场景下的复杂优化挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Optimization for Anything (BOA): An open-source framework for accessible, user-friendly Bayesian optimization

We introduce Bayesian Optimization for Anything (BOA), a high-level Bayesian Optimization (BO) framework and model wrapping toolkit, which presents a novel approach to simplifying BO, with the goal of making it more accessible and user-friendly, particularly for those with limited expertise in the field. BOA addresses common barriers in implementing BO, focusing on ease of use, reducing the need for deep domain knowledge, and cutting down on extensive coding requirements. A notable feature of BOA is its language-agnostic architecture, which facilitates broader application in various fields and to a wider audience. We showcase BOA's application through three examples: a high-dimensional optimization with 184 parameters of the SWAT + watershed model, a highly parallelized optimization of this intrinsically non-parallel model, and a multi-objective optimization of the FETCH Tree-Crown Hydrodynamics model. These test cases illustrate BOA's effectiveness in addressing complex optimization challenges in diverse scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1