{"title":"时变射频供电系统中实现吞吐量最大化的 \"先收获后发射 \"优化调度","authors":"Feng Shan;Junzhou Luo;Qiao Jin;Liwen Cao;Weiwei Wu;Zhen Ling;Fang Dong","doi":"10.1109/JSAC.2024.3431569","DOIUrl":null,"url":null,"abstract":"Energy harvesting is a promising technique to address the energy hunger problem for thousands of wireless devices. In Radio Frequency (RF) energy harvesting systems, a wireless device first harvests energy and then transmits data with this energy, hence the ‘harvest-then-transmit’ (HTT) principle is widely adopted. We must carefully design the HTT schedule, i.e., schedule the timing between harvesting and transmission, and decide the data transmission power such that the throughput can be maximized with the limited harvested energy. Distinct from existing work, we assume energy harvested from RF sources is time-varying, which is more practical but more difficult to handle. We first discover a surprising result that the optimal transmission power is independent of the transmission time, but solely depends on the RF harvesting power, for a simple case when the energy harvesting is stable. We then obtain an optimal offline HTT-scheduling for the general case that allows the RF harvesting power to vary with time. To the best of our knowledge, it is the first optimal HTT-scheduling algorithm that achieves maximum data throughput for time-varying RF powered systems. Finally, an efficient online heuristic algorithm is designed based on the offline optimality properties. Simulations show that the proposed online algorithm has superior performance, which achieves more than 90% of the offline maximum throughput in most cases.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 11","pages":"3140-3156"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Harvest-Then-Transmit Scheduling for Throughput Maximization in Time-Varying RF Powered Systems\",\"authors\":\"Feng Shan;Junzhou Luo;Qiao Jin;Liwen Cao;Weiwei Wu;Zhen Ling;Fang Dong\",\"doi\":\"10.1109/JSAC.2024.3431569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy harvesting is a promising technique to address the energy hunger problem for thousands of wireless devices. In Radio Frequency (RF) energy harvesting systems, a wireless device first harvests energy and then transmits data with this energy, hence the ‘harvest-then-transmit’ (HTT) principle is widely adopted. We must carefully design the HTT schedule, i.e., schedule the timing between harvesting and transmission, and decide the data transmission power such that the throughput can be maximized with the limited harvested energy. Distinct from existing work, we assume energy harvested from RF sources is time-varying, which is more practical but more difficult to handle. We first discover a surprising result that the optimal transmission power is independent of the transmission time, but solely depends on the RF harvesting power, for a simple case when the energy harvesting is stable. We then obtain an optimal offline HTT-scheduling for the general case that allows the RF harvesting power to vary with time. To the best of our knowledge, it is the first optimal HTT-scheduling algorithm that achieves maximum data throughput for time-varying RF powered systems. Finally, an efficient online heuristic algorithm is designed based on the offline optimality properties. Simulations show that the proposed online algorithm has superior performance, which achieves more than 90% of the offline maximum throughput in most cases.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"42 11\",\"pages\":\"3140-3156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654778/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10654778/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Harvest-Then-Transmit Scheduling for Throughput Maximization in Time-Varying RF Powered Systems
Energy harvesting is a promising technique to address the energy hunger problem for thousands of wireless devices. In Radio Frequency (RF) energy harvesting systems, a wireless device first harvests energy and then transmits data with this energy, hence the ‘harvest-then-transmit’ (HTT) principle is widely adopted. We must carefully design the HTT schedule, i.e., schedule the timing between harvesting and transmission, and decide the data transmission power such that the throughput can be maximized with the limited harvested energy. Distinct from existing work, we assume energy harvested from RF sources is time-varying, which is more practical but more difficult to handle. We first discover a surprising result that the optimal transmission power is independent of the transmission time, but solely depends on the RF harvesting power, for a simple case when the energy harvesting is stable. We then obtain an optimal offline HTT-scheduling for the general case that allows the RF harvesting power to vary with time. To the best of our knowledge, it is the first optimal HTT-scheduling algorithm that achieves maximum data throughput for time-varying RF powered systems. Finally, an efficient online heuristic algorithm is designed based on the offline optimality properties. Simulations show that the proposed online algorithm has superior performance, which achieves more than 90% of the offline maximum throughput in most cases.