{"title":"用于双向激光雷达-相机语义分割的单模到多模知识提炼","authors":"Tianfang Sun;Zhizhong Zhang;Xin Tan;Yong Peng;Yanyun Qu;Yuan Xie","doi":"10.1109/TPAMI.2024.3451658","DOIUrl":null,"url":null,"abstract":"Combining LiDAR points and images for robust semantic segmentation has shown great potential. However, the heterogeneity between the two modalities (e.g. the density, the field of view) poses challenges in establishing a bijective mapping between each point and pixel. This modality alignment problem introduces new challenges in network design and data processing for cross-modal methods. Specifically, 1) points that are projected outside the image planes; 2) the complexity of maintaining geometric consistency limits the deployment of many data augmentation techniques. To address these challenges, we propose a cross-modal knowledge imputation and transition approach. First, we introduce a bidirectional feature fusion strategy that imputes missing image features and performs cross-modal fusion simultaneously. This allows us to generate reliable predictions even when images are missing. Second, we propose a Uni-to-Multi modal Knowledge Distillation (U2MKD) framework, leveraging the transfer of informative features from a single-modality teacher to a cross-modality student. This overcomes the issues of augmentation misalignment and enables us to train the student effectively. Extensive experiments on the nuScenes, Waymo, and SemanticKITTI datasets demonstrate the effectiveness of our approach. Notably, our method achieves an 8.3 mIoU gain over the LiDAR-only baseline on the nuScenes validation set and achieves state-of-the-art performance on the three datasets.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11059-11072"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uni-to-Multi Modal Knowledge Distillation for Bidirectional LiDAR-Camera Semantic Segmentation\",\"authors\":\"Tianfang Sun;Zhizhong Zhang;Xin Tan;Yong Peng;Yanyun Qu;Yuan Xie\",\"doi\":\"10.1109/TPAMI.2024.3451658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining LiDAR points and images for robust semantic segmentation has shown great potential. However, the heterogeneity between the two modalities (e.g. the density, the field of view) poses challenges in establishing a bijective mapping between each point and pixel. This modality alignment problem introduces new challenges in network design and data processing for cross-modal methods. Specifically, 1) points that are projected outside the image planes; 2) the complexity of maintaining geometric consistency limits the deployment of many data augmentation techniques. To address these challenges, we propose a cross-modal knowledge imputation and transition approach. First, we introduce a bidirectional feature fusion strategy that imputes missing image features and performs cross-modal fusion simultaneously. This allows us to generate reliable predictions even when images are missing. Second, we propose a Uni-to-Multi modal Knowledge Distillation (U2MKD) framework, leveraging the transfer of informative features from a single-modality teacher to a cross-modality student. This overcomes the issues of augmentation misalignment and enables us to train the student effectively. Extensive experiments on the nuScenes, Waymo, and SemanticKITTI datasets demonstrate the effectiveness of our approach. Notably, our method achieves an 8.3 mIoU gain over the LiDAR-only baseline on the nuScenes validation set and achieves state-of-the-art performance on the three datasets.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"46 12\",\"pages\":\"11059-11072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659158/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659158/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uni-to-Multi Modal Knowledge Distillation for Bidirectional LiDAR-Camera Semantic Segmentation
Combining LiDAR points and images for robust semantic segmentation has shown great potential. However, the heterogeneity between the two modalities (e.g. the density, the field of view) poses challenges in establishing a bijective mapping between each point and pixel. This modality alignment problem introduces new challenges in network design and data processing for cross-modal methods. Specifically, 1) points that are projected outside the image planes; 2) the complexity of maintaining geometric consistency limits the deployment of many data augmentation techniques. To address these challenges, we propose a cross-modal knowledge imputation and transition approach. First, we introduce a bidirectional feature fusion strategy that imputes missing image features and performs cross-modal fusion simultaneously. This allows us to generate reliable predictions even when images are missing. Second, we propose a Uni-to-Multi modal Knowledge Distillation (U2MKD) framework, leveraging the transfer of informative features from a single-modality teacher to a cross-modality student. This overcomes the issues of augmentation misalignment and enables us to train the student effectively. Extensive experiments on the nuScenes, Waymo, and SemanticKITTI datasets demonstrate the effectiveness of our approach. Notably, our method achieves an 8.3 mIoU gain over the LiDAR-only baseline on the nuScenes validation set and achieves state-of-the-art performance on the three datasets.