Ruohua Wang, Qiushuang Zhu, He Huang, Mengxia Yang, Xinyue Wang, Yuanjie Dong, Yuqiao Li, Yue Guan, Lei Zhong, Yucun Niu
{"title":"定期限制蛋白质饮食可延长高脂饮食诱导的黑腹果蝇雄虫的寿命","authors":"Ruohua Wang, Qiushuang Zhu, He Huang, Mengxia Yang, Xinyue Wang, Yuanjie Dong, Yuqiao Li, Yue Guan, Lei Zhong, Yucun Niu","doi":"10.1111/acel.14327","DOIUrl":null,"url":null,"abstract":"<p>Research has shown that sustained protein restriction can improve the effects of a high-fat diet on health and extend lifespan. However, long-term adherence to a protein-restricted diet is challenging. Therefore, we used a fly model to investigate whether periodic protein restriction (PPR) could also mitigate the potential adverse effects of a high-fat diet and extend healthy lifespan. Our study results showed that PPR reduced body weight, lipid levels, and oxidative stress induced by a high-fat diet in flies and significantly extended the healthy lifespan of male flies. Lipid metabolism and transcriptome results revealed that the common differences between the PPR group and the control group and high-fat group showed a significant decrease in palmitic acid in the PPR group; the enriched common differential pathways Toll and Imd were significantly inhibited in the PPR group. Further analysis indicated a significant positive correlation between palmitic acid levels and gene expression in the Toll and Imd pathways. This suggests that PPR effectively improves fruit fly lipid metabolism, reduces palmitic acid levels, and thereby suppresses the Toll and Imd pathways to extend the healthy lifespan of flies. Our study provides a theoretical basis for the long-term effects of PPR on health and offers a new dietary adjustment option for maintaining health in the long term.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"23 12","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Periodic protein-restricted diets extend the lifespan of high-fat diet-induced Drosophila melanogaster males\",\"authors\":\"Ruohua Wang, Qiushuang Zhu, He Huang, Mengxia Yang, Xinyue Wang, Yuanjie Dong, Yuqiao Li, Yue Guan, Lei Zhong, Yucun Niu\",\"doi\":\"10.1111/acel.14327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research has shown that sustained protein restriction can improve the effects of a high-fat diet on health and extend lifespan. However, long-term adherence to a protein-restricted diet is challenging. Therefore, we used a fly model to investigate whether periodic protein restriction (PPR) could also mitigate the potential adverse effects of a high-fat diet and extend healthy lifespan. Our study results showed that PPR reduced body weight, lipid levels, and oxidative stress induced by a high-fat diet in flies and significantly extended the healthy lifespan of male flies. Lipid metabolism and transcriptome results revealed that the common differences between the PPR group and the control group and high-fat group showed a significant decrease in palmitic acid in the PPR group; the enriched common differential pathways Toll and Imd were significantly inhibited in the PPR group. Further analysis indicated a significant positive correlation between palmitic acid levels and gene expression in the Toll and Imd pathways. This suggests that PPR effectively improves fruit fly lipid metabolism, reduces palmitic acid levels, and thereby suppresses the Toll and Imd pathways to extend the healthy lifespan of flies. Our study provides a theoretical basis for the long-term effects of PPR on health and offers a new dietary adjustment option for maintaining health in the long term.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14327\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14327","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Periodic protein-restricted diets extend the lifespan of high-fat diet-induced Drosophila melanogaster males
Research has shown that sustained protein restriction can improve the effects of a high-fat diet on health and extend lifespan. However, long-term adherence to a protein-restricted diet is challenging. Therefore, we used a fly model to investigate whether periodic protein restriction (PPR) could also mitigate the potential adverse effects of a high-fat diet and extend healthy lifespan. Our study results showed that PPR reduced body weight, lipid levels, and oxidative stress induced by a high-fat diet in flies and significantly extended the healthy lifespan of male flies. Lipid metabolism and transcriptome results revealed that the common differences between the PPR group and the control group and high-fat group showed a significant decrease in palmitic acid in the PPR group; the enriched common differential pathways Toll and Imd were significantly inhibited in the PPR group. Further analysis indicated a significant positive correlation between palmitic acid levels and gene expression in the Toll and Imd pathways. This suggests that PPR effectively improves fruit fly lipid metabolism, reduces palmitic acid levels, and thereby suppresses the Toll and Imd pathways to extend the healthy lifespan of flies. Our study provides a theoretical basis for the long-term effects of PPR on health and offers a new dietary adjustment option for maintaining health in the long term.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.