Arzu Gumus, Ilaria D'Agostino, Valentina Puca, Valentina Crocetta, Simone Carradori, Luigi Cutarella, Mattia Mori, Fabrizio Carta, Andrea Angeli, Clemente Capasso, Claudiu T. Supuran
{"title":"酰基硫代氨基甲酰肼的环化导致了新的幽门螺旋杆菌α-碳酸酐酶抑制剂的产生。","authors":"Arzu Gumus, Ilaria D'Agostino, Valentina Puca, Valentina Crocetta, Simone Carradori, Luigi Cutarella, Mattia Mori, Fabrizio Carta, Andrea Angeli, Clemente Capasso, Claudiu T. Supuran","doi":"10.1002/ardp.202400548","DOIUrl":null,"url":null,"abstract":"<p>The eradication of <i>Helicobacter pylori</i>, the etiologic agent of gastric ulcer and adenocarcinoma, is a big concern in clinics due to the increasing drug resistance phenomena and the limited number of efficacious treatment options. The exploitation of the <i>H. pylori</i> carbonic anhydrases (HpCAs) as promising pharmacological targets has been validated by the antibacterial activity of previously reported CA inhibitors due to the role of these enzymes in the bacterium survival in the gastric mucosa. The development of new HpCA inhibitors seems to be on the way to filling the existing antibiotics gap. Due to the recent evidence on the ability of the coumarin scaffold to inhibit microbial α-CAs, a large library of derivatives has been developed by means of a pH-regulated cyclization reaction of coumarin-bearing acyl thiosemicarbazide intermediates. The obtained 1,3,4-thiadiazoles (<b>10–18a,b</b>) and 1,2,4-triazole-3-thiones (<b>19–26a,b</b>) were found to strongly and selectively inhibit HpαCA and computational studies were fundamental to gaining an understanding of the interaction networks governing the enzyme–inhibitor complex. Antibacterial evaluations on <i>H. pylori</i> ATCC 43504 highlighted some compounds that maintained potency on a resistant clinical isolate. Also, their combinations with metronidazole decreased both the minimal inhibitory concentration and minimal bactericidal concentration values of the antibiotic, with no synergistic effect.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.202400548","citationCount":"0","resultStr":"{\"title\":\"Cyclization of acyl thiosemicarbazides led to new Helicobacter pylori α-carbonic anhydrase inhibitors\",\"authors\":\"Arzu Gumus, Ilaria D'Agostino, Valentina Puca, Valentina Crocetta, Simone Carradori, Luigi Cutarella, Mattia Mori, Fabrizio Carta, Andrea Angeli, Clemente Capasso, Claudiu T. Supuran\",\"doi\":\"10.1002/ardp.202400548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The eradication of <i>Helicobacter pylori</i>, the etiologic agent of gastric ulcer and adenocarcinoma, is a big concern in clinics due to the increasing drug resistance phenomena and the limited number of efficacious treatment options. The exploitation of the <i>H. pylori</i> carbonic anhydrases (HpCAs) as promising pharmacological targets has been validated by the antibacterial activity of previously reported CA inhibitors due to the role of these enzymes in the bacterium survival in the gastric mucosa. The development of new HpCA inhibitors seems to be on the way to filling the existing antibiotics gap. Due to the recent evidence on the ability of the coumarin scaffold to inhibit microbial α-CAs, a large library of derivatives has been developed by means of a pH-regulated cyclization reaction of coumarin-bearing acyl thiosemicarbazide intermediates. The obtained 1,3,4-thiadiazoles (<b>10–18a,b</b>) and 1,2,4-triazole-3-thiones (<b>19–26a,b</b>) were found to strongly and selectively inhibit HpαCA and computational studies were fundamental to gaining an understanding of the interaction networks governing the enzyme–inhibitor complex. Antibacterial evaluations on <i>H. pylori</i> ATCC 43504 highlighted some compounds that maintained potency on a resistant clinical isolate. Also, their combinations with metronidazole decreased both the minimal inhibitory concentration and minimal bactericidal concentration values of the antibiotic, with no synergistic effect.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 11\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.202400548\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400548\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400548","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cyclization of acyl thiosemicarbazides led to new Helicobacter pylori α-carbonic anhydrase inhibitors
The eradication of Helicobacter pylori, the etiologic agent of gastric ulcer and adenocarcinoma, is a big concern in clinics due to the increasing drug resistance phenomena and the limited number of efficacious treatment options. The exploitation of the H. pylori carbonic anhydrases (HpCAs) as promising pharmacological targets has been validated by the antibacterial activity of previously reported CA inhibitors due to the role of these enzymes in the bacterium survival in the gastric mucosa. The development of new HpCA inhibitors seems to be on the way to filling the existing antibiotics gap. Due to the recent evidence on the ability of the coumarin scaffold to inhibit microbial α-CAs, a large library of derivatives has been developed by means of a pH-regulated cyclization reaction of coumarin-bearing acyl thiosemicarbazide intermediates. The obtained 1,3,4-thiadiazoles (10–18a,b) and 1,2,4-triazole-3-thiones (19–26a,b) were found to strongly and selectively inhibit HpαCA and computational studies were fundamental to gaining an understanding of the interaction networks governing the enzyme–inhibitor complex. Antibacterial evaluations on H. pylori ATCC 43504 highlighted some compounds that maintained potency on a resistant clinical isolate. Also, their combinations with metronidazole decreased both the minimal inhibitory concentration and minimal bactericidal concentration values of the antibiotic, with no synergistic effect.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.