{"title":"蛋白质电晕在推进血浆蛋白质组学方面的作用。","authors":"Amir Ata Saei, Liangliang Sun, Morteza Mahmoudi","doi":"10.1002/pmic.202400028","DOIUrl":null,"url":null,"abstract":"<p><p>The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology. This viewpoint focuses on leveraging the protein corona to enhance the depth of plasma proteome analysis, addressing challenges posed by the high dynamic range of protein concentrations in plasma. The protein corona simplifies sample preparation, enriches low-abundance proteins, and improves proteome coverage. Innovations include using diverse nanoparticles and spiking small molecules to increase the number of quantified proteins. Reproducibility issues across core facilities necessitate standardized protocols. Moreover, top-down proteomics enables proteoform-specific measurements, providing deeper insights into protein corona composition. Future research should aim at improving top-down proteomics techniques and integrating protein corona studies and proteomics for personalized medicine and advanced diagnostics.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e2400028"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of protein corona in advancing plasma proteomics.\",\"authors\":\"Amir Ata Saei, Liangliang Sun, Morteza Mahmoudi\",\"doi\":\"10.1002/pmic.202400028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology. This viewpoint focuses on leveraging the protein corona to enhance the depth of plasma proteome analysis, addressing challenges posed by the high dynamic range of protein concentrations in plasma. The protein corona simplifies sample preparation, enriches low-abundance proteins, and improves proteome coverage. Innovations include using diverse nanoparticles and spiking small molecules to increase the number of quantified proteins. Reproducibility issues across core facilities necessitate standardized protocols. Moreover, top-down proteomics enables proteoform-specific measurements, providing deeper insights into protein corona composition. Future research should aim at improving top-down proteomics techniques and integrating protein corona studies and proteomics for personalized medicine and advanced diagnostics.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e2400028\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400028\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The role of protein corona in advancing plasma proteomics.
The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology. This viewpoint focuses on leveraging the protein corona to enhance the depth of plasma proteome analysis, addressing challenges posed by the high dynamic range of protein concentrations in plasma. The protein corona simplifies sample preparation, enriches low-abundance proteins, and improves proteome coverage. Innovations include using diverse nanoparticles and spiking small molecules to increase the number of quantified proteins. Reproducibility issues across core facilities necessitate standardized protocols. Moreover, top-down proteomics enables proteoform-specific measurements, providing deeper insights into protein corona composition. Future research should aim at improving top-down proteomics techniques and integrating protein corona studies and proteomics for personalized medicine and advanced diagnostics.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.