通过应用机器学习发现脑瘫的早期预测因素:病例对照研究。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-30 DOI:10.1136/bmjpo-2024-002800
Sara Rapuc, Blaž Stres, Ivan Verdenik, Miha Lučovnik, Damjan Osredkar
{"title":"通过应用机器学习发现脑瘫的早期预测因素:病例对照研究。","authors":"Sara Rapuc, Blaž Stres, Ivan Verdenik, Miha Lučovnik, Damjan Osredkar","doi":"10.1136/bmjpo-2024-002800","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cerebral palsy (CP) is a group of neurological disorders with profound implications for children's development. The identification of perinatal risk factors for CP may lead to improved preventive and therapeutic strategies. This study aimed to identify the early predictors of CP using machine learning (ML).</p><p><strong>Design: </strong>This is a retrospective case-control study, using data from the two population-based databases, the Slovenian National Perinatal Information System and the Slovenian Registry of Cerebral Palsy. Multiple ML algorithms were evaluated to identify the best model for predicting CP.</p><p><strong>Setting: </strong>This is a population-based study of CP and control subjects born into one of Slovenia's 14 maternity wards.</p><p><strong>Participants: </strong>A total of 382 CP cases, born between 2002 and 2017, were identified. Controls were selected at a control-to-case ratio of 3:1, with matched gestational age and birth multiplicity. CP cases with congenital anomalies (<i>n</i>=44) were excluded from the analysis. A total of 338 CP cases and 1014 controls were included in the study.</p><p><strong>Exposure: </strong>135 variables relating to perinatal and maternal factors.</p><p><strong>Main outcome measures: </strong>Receiver operating characteristic (ROC), sensitivity and specificity.</p><p><strong>Results: </strong>The stochastic gradient boosting ML model (271 cases and 812 controls) demonstrated the highest mean ROC value of 0.81 (mean sensitivity=0.46 and mean specificity=0.95). Using this model with the validation dataset (67 cases and 202 controls) resulted in an area under the ROC curve of 0.77 (mean sensitivity=0.27 and mean specificity=0.94).</p><p><strong>Conclusions: </strong>Our final ML model using early perinatal factors could not reliably predict CP in our cohort. Future studies should evaluate models with additional factors, such as genetic and neuroimaging data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncovering early predictors of cerebral palsy through the application of machine learning: a case-control study.\",\"authors\":\"Sara Rapuc, Blaž Stres, Ivan Verdenik, Miha Lučovnik, Damjan Osredkar\",\"doi\":\"10.1136/bmjpo-2024-002800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cerebral palsy (CP) is a group of neurological disorders with profound implications for children's development. The identification of perinatal risk factors for CP may lead to improved preventive and therapeutic strategies. This study aimed to identify the early predictors of CP using machine learning (ML).</p><p><strong>Design: </strong>This is a retrospective case-control study, using data from the two population-based databases, the Slovenian National Perinatal Information System and the Slovenian Registry of Cerebral Palsy. Multiple ML algorithms were evaluated to identify the best model for predicting CP.</p><p><strong>Setting: </strong>This is a population-based study of CP and control subjects born into one of Slovenia's 14 maternity wards.</p><p><strong>Participants: </strong>A total of 382 CP cases, born between 2002 and 2017, were identified. Controls were selected at a control-to-case ratio of 3:1, with matched gestational age and birth multiplicity. CP cases with congenital anomalies (<i>n</i>=44) were excluded from the analysis. A total of 338 CP cases and 1014 controls were included in the study.</p><p><strong>Exposure: </strong>135 variables relating to perinatal and maternal factors.</p><p><strong>Main outcome measures: </strong>Receiver operating characteristic (ROC), sensitivity and specificity.</p><p><strong>Results: </strong>The stochastic gradient boosting ML model (271 cases and 812 controls) demonstrated the highest mean ROC value of 0.81 (mean sensitivity=0.46 and mean specificity=0.95). Using this model with the validation dataset (67 cases and 202 controls) resulted in an area under the ROC curve of 0.77 (mean sensitivity=0.27 and mean specificity=0.94).</p><p><strong>Conclusions: </strong>Our final ML model using early perinatal factors could not reliably predict CP in our cohort. Future studies should evaluate models with additional factors, such as genetic and neuroimaging data.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjpo-2024-002800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjpo-2024-002800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:脑性瘫痪(CP)是一组对儿童发育有深远影响的神经系统疾病。识别CP的围产期风险因素可能有助于改进预防和治疗策略。本研究旨在利用机器学习(ML)识别CP的早期预测因素:这是一项回顾性病例对照研究,使用的数据来自两个基于人口的数据库,即斯洛文尼亚国家围产期信息系统和斯洛文尼亚脑瘫登记处。研究评估了多种多重多项式算法,以确定预测 CP 的最佳模型:这是一项基于人口的研究,研究对象是斯洛文尼亚 14 个产科病房中出生的 CP 和对照受试者:共确定了 382 例 2002 年至 2017 年间出生的 CP 病例。对照组的选择比例为 3:1,胎龄和出生倍数相匹配。有先天性异常的 CP 病例(n=44)被排除在分析之外。研究共纳入了 338 例 CP 病例和 1014 例对照。暴露:135 个与围产期和母体因素有关的变量:主要结果测量指标:接收者操作特征(ROC)、灵敏度和特异性:随机梯度增强 ML 模型(271 例病例和 812 例对照)显示出最高的平均 ROC 值 0.81(平均灵敏度=0.46,平均特异性=0.95)。在验证数据集(67 例病例和 202 例对照)中使用该模型的 ROC 曲线下面积为 0.77(平均灵敏度=0.27,平均特异度=0.94):我们使用围产期早期因素建立的最终 ML 模型不能可靠地预测队列中的 CP。未来的研究应评估包含其他因素(如遗传和神经影像学数据)的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering early predictors of cerebral palsy through the application of machine learning: a case-control study.

Objective: Cerebral palsy (CP) is a group of neurological disorders with profound implications for children's development. The identification of perinatal risk factors for CP may lead to improved preventive and therapeutic strategies. This study aimed to identify the early predictors of CP using machine learning (ML).

Design: This is a retrospective case-control study, using data from the two population-based databases, the Slovenian National Perinatal Information System and the Slovenian Registry of Cerebral Palsy. Multiple ML algorithms were evaluated to identify the best model for predicting CP.

Setting: This is a population-based study of CP and control subjects born into one of Slovenia's 14 maternity wards.

Participants: A total of 382 CP cases, born between 2002 and 2017, were identified. Controls were selected at a control-to-case ratio of 3:1, with matched gestational age and birth multiplicity. CP cases with congenital anomalies (n=44) were excluded from the analysis. A total of 338 CP cases and 1014 controls were included in the study.

Exposure: 135 variables relating to perinatal and maternal factors.

Main outcome measures: Receiver operating characteristic (ROC), sensitivity and specificity.

Results: The stochastic gradient boosting ML model (271 cases and 812 controls) demonstrated the highest mean ROC value of 0.81 (mean sensitivity=0.46 and mean specificity=0.95). Using this model with the validation dataset (67 cases and 202 controls) resulted in an area under the ROC curve of 0.77 (mean sensitivity=0.27 and mean specificity=0.94).

Conclusions: Our final ML model using early perinatal factors could not reliably predict CP in our cohort. Future studies should evaluate models with additional factors, such as genetic and neuroimaging data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1