Sujay Krishna Maity, Avinil Das Sharma, Jit Sarkar, Tamonash Chaudhuri, Om Tantia, Partha Chakrabarti
{"title":"在非 2 型糖尿病人群中,脂肪组织衍生的腺体蛋白标志着人类的衰老。","authors":"Sujay Krishna Maity, Avinil Das Sharma, Jit Sarkar, Tamonash Chaudhuri, Om Tantia, Partha Chakrabarti","doi":"10.1136/bmjdrc-2024-004179","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Adipsin or complement factor D is an adipokine that augments insulin secretion, is altered in various degrees of obesity, and is involved in alternative complement pathway. However, whether adipsin has any independent association with risk factors and biomarkers in patients with type 2 diabetes (T2D) remains elusive.</p><p><strong>Research design and methods: </strong>We performed an oral glucose tolerance test on a subset of 43 patients with T2D from the community health cohort to access the role of adipsin in insulin secretion. We further cross-sectionally examined the role of adipsin in plasma, adipose tissue (AT), and secretion in a community cohort of 353 subjects and a hospital cohort of 52 subjects.</p><p><strong>Results: </strong>We found that plasma adipsin has no significant correlation with insulin secretion in people with diabetes. Among the risk factors of T2D, adipsin levels were independently associated only with age, and a positive correlation between plasma adipsin and age among subjects without T2D was lost in patients with T2D. Plasma adipsin levels, AT adipsin expression, and secretion were upregulated both in T2D and aging, with a corresponding drop in Homeostatic Model Assessment for assessing β-cell function. Adipsin expression was positively associated with other aging biomarkers, such as β-galactosidase, p21, and p16. These results also corroborated with existing plasma proteomic signatures of aging, including growth, and differentiation factor-15, which strongly correlated with adipsin.</p><p><strong>Conclusions: </strong>Our results demonstrate an increase in circulating adipsin in T2D and aging, and it scores as a candidate plasma marker for aging specifically in non-T2D population.</p>","PeriodicalId":9151,"journal":{"name":"BMJ Open Diabetes Research & Care","volume":"12 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adipose tissue-derived adipsin marks human aging in non-type 2 diabetes population.\",\"authors\":\"Sujay Krishna Maity, Avinil Das Sharma, Jit Sarkar, Tamonash Chaudhuri, Om Tantia, Partha Chakrabarti\",\"doi\":\"10.1136/bmjdrc-2024-004179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Adipsin or complement factor D is an adipokine that augments insulin secretion, is altered in various degrees of obesity, and is involved in alternative complement pathway. However, whether adipsin has any independent association with risk factors and biomarkers in patients with type 2 diabetes (T2D) remains elusive.</p><p><strong>Research design and methods: </strong>We performed an oral glucose tolerance test on a subset of 43 patients with T2D from the community health cohort to access the role of adipsin in insulin secretion. We further cross-sectionally examined the role of adipsin in plasma, adipose tissue (AT), and secretion in a community cohort of 353 subjects and a hospital cohort of 52 subjects.</p><p><strong>Results: </strong>We found that plasma adipsin has no significant correlation with insulin secretion in people with diabetes. Among the risk factors of T2D, adipsin levels were independently associated only with age, and a positive correlation between plasma adipsin and age among subjects without T2D was lost in patients with T2D. Plasma adipsin levels, AT adipsin expression, and secretion were upregulated both in T2D and aging, with a corresponding drop in Homeostatic Model Assessment for assessing β-cell function. Adipsin expression was positively associated with other aging biomarkers, such as β-galactosidase, p21, and p16. These results also corroborated with existing plasma proteomic signatures of aging, including growth, and differentiation factor-15, which strongly correlated with adipsin.</p><p><strong>Conclusions: </strong>Our results demonstrate an increase in circulating adipsin in T2D and aging, and it scores as a candidate plasma marker for aging specifically in non-T2D population.</p>\",\"PeriodicalId\":9151,\"journal\":{\"name\":\"BMJ Open Diabetes Research & Care\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Open Diabetes Research & Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjdrc-2024-004179\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Diabetes Research & Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjdrc-2024-004179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Adipose tissue-derived adipsin marks human aging in non-type 2 diabetes population.
Introduction: Adipsin or complement factor D is an adipokine that augments insulin secretion, is altered in various degrees of obesity, and is involved in alternative complement pathway. However, whether adipsin has any independent association with risk factors and biomarkers in patients with type 2 diabetes (T2D) remains elusive.
Research design and methods: We performed an oral glucose tolerance test on a subset of 43 patients with T2D from the community health cohort to access the role of adipsin in insulin secretion. We further cross-sectionally examined the role of adipsin in plasma, adipose tissue (AT), and secretion in a community cohort of 353 subjects and a hospital cohort of 52 subjects.
Results: We found that plasma adipsin has no significant correlation with insulin secretion in people with diabetes. Among the risk factors of T2D, adipsin levels were independently associated only with age, and a positive correlation between plasma adipsin and age among subjects without T2D was lost in patients with T2D. Plasma adipsin levels, AT adipsin expression, and secretion were upregulated both in T2D and aging, with a corresponding drop in Homeostatic Model Assessment for assessing β-cell function. Adipsin expression was positively associated with other aging biomarkers, such as β-galactosidase, p21, and p16. These results also corroborated with existing plasma proteomic signatures of aging, including growth, and differentiation factor-15, which strongly correlated with adipsin.
Conclusions: Our results demonstrate an increase in circulating adipsin in T2D and aging, and it scores as a candidate plasma marker for aging specifically in non-T2D population.
期刊介绍:
BMJ Open Diabetes Research & Care is an open access journal committed to publishing high-quality, basic and clinical research articles regarding type 1 and type 2 diabetes, and associated complications. Only original content will be accepted, and submissions are subject to rigorous peer review to ensure the publication of
high-quality — and evidence-based — original research articles.