{"title":"靶向表皮生长因子受体和 AXL 的双特异性抗体可延缓奥希替尼的耐药性。","authors":"Arturo Simoni-Nieves, Moshit Lindzen, Suvendu Giri, Nitin Gupta, Rishita Chatterjee, Boobash-Raj Selvadurai, Marieke Van Daele, Danielle Love, Yuya Haga, Donatella Romaniello, Tomer-Meir Salame, Mirie Zerbib, Roni Oren, Yasuo Tsutsumi, Mattia Lauriola, Ilaria Marrocco, Yosef Yarden","doi":"10.1016/j.xcrm.2024.101703","DOIUrl":null,"url":null,"abstract":"<p><p>Activating EGFR (epidermal growth factor receptor) mutations can be inhibited by specific tyrosine kinase inhibitors (TKIs), which have changed the landscape of lung cancer therapy. However, due to secondary mutations and bypass receptors, such as AXL (AXL receptor tyrosine kinase), drug resistance eventually emerges in most patients treated with the first-, second-, or third-generation TKIs (e.g., osimertinib). To inhibit AXL and resistance to osimertinib, we compare two anti-AXL drugs, an antibody (mAb654) and a TKI (bemcentinib). While no pair of osimertinib and an anti-AXL drug is able to prevent relapses, triplets combining osimertinib, cetuximab (an anti-EGFR antibody), and either anti-AXL drug are initially effective. However, longer monitoring uncovers superiority of the mAb654-containing triplet, possibly due to induction of receptor endocytosis, activation of immune mechanisms, or disabling intrinsic mutators. Hence, we constructed a bispecific antibody that engages both AXL and EGFR. When combined with osimertinib, the bispecific antibody consistently inhibits tumor relapses, which warrants clinical trials.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528239/pdf/","citationCount":"0","resultStr":"{\"title\":\"A bispecific antibody targeting EGFR and AXL delays resistance to osimertinib.\",\"authors\":\"Arturo Simoni-Nieves, Moshit Lindzen, Suvendu Giri, Nitin Gupta, Rishita Chatterjee, Boobash-Raj Selvadurai, Marieke Van Daele, Danielle Love, Yuya Haga, Donatella Romaniello, Tomer-Meir Salame, Mirie Zerbib, Roni Oren, Yasuo Tsutsumi, Mattia Lauriola, Ilaria Marrocco, Yosef Yarden\",\"doi\":\"10.1016/j.xcrm.2024.101703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Activating EGFR (epidermal growth factor receptor) mutations can be inhibited by specific tyrosine kinase inhibitors (TKIs), which have changed the landscape of lung cancer therapy. However, due to secondary mutations and bypass receptors, such as AXL (AXL receptor tyrosine kinase), drug resistance eventually emerges in most patients treated with the first-, second-, or third-generation TKIs (e.g., osimertinib). To inhibit AXL and resistance to osimertinib, we compare two anti-AXL drugs, an antibody (mAb654) and a TKI (bemcentinib). While no pair of osimertinib and an anti-AXL drug is able to prevent relapses, triplets combining osimertinib, cetuximab (an anti-EGFR antibody), and either anti-AXL drug are initially effective. However, longer monitoring uncovers superiority of the mAb654-containing triplet, possibly due to induction of receptor endocytosis, activation of immune mechanisms, or disabling intrinsic mutators. Hence, we constructed a bispecific antibody that engages both AXL and EGFR. When combined with osimertinib, the bispecific antibody consistently inhibits tumor relapses, which warrants clinical trials.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2024.101703\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101703","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
特定的酪氨酸激酶抑制剂(TKIs)可抑制表皮生长因子受体(EGFR)的活化突变,从而改变了肺癌治疗的格局。然而,由于继发性突变和AXL(AXL受体酪氨酸激酶)等旁路受体的存在,大多数接受第一代、第二代或第三代TKIs(如奥西美替尼)治疗的患者最终会出现耐药性。为了抑制 AXL 和奥希替尼的耐药性,我们比较了两种抗 AXL 药物,一种是抗体(mAb654),另一种是 TKI(bemcentinib)。虽然奥希替尼和抗AXL药物的组合都无法防止复发,但奥希替尼、西妥昔单抗(一种抗表皮生长因子受体(EGFR)抗体)和任一种抗AXL药物的三联疗法最初是有效的。然而,长期监测发现,含 mAb654 的三联疗法更具优势,这可能是由于诱导了受体内吞、激活了免疫机制或禁用了内在突变体。因此,我们构建了一种能同时与 AXL 和表皮生长因子受体结合的双特异性抗体。该双特异性抗体与奥希替尼联用时,能持续抑制肿瘤复发,因此值得进行临床试验。
A bispecific antibody targeting EGFR and AXL delays resistance to osimertinib.
Activating EGFR (epidermal growth factor receptor) mutations can be inhibited by specific tyrosine kinase inhibitors (TKIs), which have changed the landscape of lung cancer therapy. However, due to secondary mutations and bypass receptors, such as AXL (AXL receptor tyrosine kinase), drug resistance eventually emerges in most patients treated with the first-, second-, or third-generation TKIs (e.g., osimertinib). To inhibit AXL and resistance to osimertinib, we compare two anti-AXL drugs, an antibody (mAb654) and a TKI (bemcentinib). While no pair of osimertinib and an anti-AXL drug is able to prevent relapses, triplets combining osimertinib, cetuximab (an anti-EGFR antibody), and either anti-AXL drug are initially effective. However, longer monitoring uncovers superiority of the mAb654-containing triplet, possibly due to induction of receptor endocytosis, activation of immune mechanisms, or disabling intrinsic mutators. Hence, we constructed a bispecific antibody that engages both AXL and EGFR. When combined with osimertinib, the bispecific antibody consistently inhibits tumor relapses, which warrants clinical trials.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.