人工抗原递呈细胞:获得功能性收养细胞的助推器。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2024-08-31 DOI:10.1007/s00018-024-05412-y
Jing Li, Weilin Zhou, Wei Wang
{"title":"人工抗原递呈细胞:获得功能性收养细胞的助推器。","authors":"Jing Li, Weilin Zhou, Wei Wang","doi":"10.1007/s00018-024-05412-y","DOIUrl":null,"url":null,"abstract":"<p><p>Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"378"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells.\",\"authors\":\"Jing Li, Weilin Zhou, Wei Wang\",\"doi\":\"10.1007/s00018-024-05412-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"81 1\",\"pages\":\"378\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05412-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05412-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用细胞疗法(ACT)在治疗血液恶性肿瘤和实体瘤方面取得了显著疗效,同时,人们也在为减少采用细胞疗法后的复发和延长缓解期做出巨大努力。基因工程 T 细胞的功能和长期抗肿瘤潜力取决于 T 细胞受体(TCR)或嵌合抗原受体(CAR)的特异性。此外,治疗效果直接取决于工程 T 细胞的充分激活和增殖。人工抗原递呈细胞(aAPCs)作为 ACT 的强大助推器,已被应用于提供同源抗原的持续刺激,并促进足够 T 细胞的扩增,以便输注。在这篇综述中,我们总结了用于产生 ACT 效应细胞的 aAPCs,并强调了 aAPCs 增强效应细胞功能的机制。手稿中包含了从基础研究到临床试验的各种研究,我们希望这些研究能凸显 aAPCs 的重要性,并为提高 ACT 效果的新策略提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells.

Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
GSDMD-dependent NET formation in hyperuricemic nephropathy. Lactate promotes H3K18 lactylation in human neuroectoderm differentiation. NFκB and JNK pathways mediate metabolic adaptation upon ESCRT-I deficiency. Regulation of yeast polarized exocytosis by phosphoinositide lipids. rTM reprograms macrophages via the HIF-1α/METTL3/PFKM axis to protect mice against sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1