Qianwen Zhou, Katja Breitkopf-Heinlein, Haristi Gaitantzi, Emrullah Birgin, Christoph Reissfelder, Nuh N Rahbari
{"title":"PDCD10 在胰腺癌中促进 TGF-β 的肿瘤支持功能。","authors":"Qianwen Zhou, Katja Breitkopf-Heinlein, Haristi Gaitantzi, Emrullah Birgin, Christoph Reissfelder, Nuh N Rahbari","doi":"10.1042/CS20240450","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of pancreatic ductal adenocarcinoma (PDAC) is significantly affected by transforming growth factor (TGF)-β but targeting TGF-β can also compromize physiological effects in patients. Our study examined the functions of the ubiquitously expressed protein, PDCD10, as a modulator of TGF-β signaling in PDAC. Using in silico analyses we found that in patient samples, PDCD10 is significantly higher expressed in PDAC tumor tissue compared with normal pancreas and it is highly correlated with reduced survival. We created stable KO's of PDCD10 in two PDAC lines, PaTu 8902 (SMAD4 +/+) and PaTu 8988t (SMAD4 -/-), and found that KO lines are more sensitive to 5-FU and Gemcitabine treatment than their wild-type counterparts. Performing viability and wound closure assays we further found that PDCD10 promotes cell survival and proliferation by enhancing specifically the mitogenic functions of TGF-β. The molecular mechanism underlying this effect was further investigated using Western blots and with primary organoid lines derived from patient PDAC tissue samples. The data imply that PDCD10 mediates an increase in p-ERK through a non-SMAD4 pathway, leading to EMT promotion. Furthermore, PDCD10 facilitates deactivation of RB via a SMAD4-dependent pathway, thereby counter-acting the anti-proliferative actions of TGF-β. By performing proximity ligation assays (PLA) we found that PDCD10 associates with the kinase MST4, translocates it intracellularly and thereby facilitates phosphorylations of RB and ERK1/2. Our study indicates that PDCD10 promotes the proliferative function and EMT induction of TGF-β in pancreatic cancer cells. Therefore, targeting PDCD10 in PDAC patients could represent a promising new strategy to optimize TGF-β targeted therapies.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":"1111-1129"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405861/pdf/","citationCount":"0","resultStr":"{\"title\":\"PDCD10 promotes the tumor-supporting functions of TGF-β in pancreatic cancer.\",\"authors\":\"Qianwen Zhou, Katja Breitkopf-Heinlein, Haristi Gaitantzi, Emrullah Birgin, Christoph Reissfelder, Nuh N Rahbari\",\"doi\":\"10.1042/CS20240450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The progression of pancreatic ductal adenocarcinoma (PDAC) is significantly affected by transforming growth factor (TGF)-β but targeting TGF-β can also compromize physiological effects in patients. Our study examined the functions of the ubiquitously expressed protein, PDCD10, as a modulator of TGF-β signaling in PDAC. Using in silico analyses we found that in patient samples, PDCD10 is significantly higher expressed in PDAC tumor tissue compared with normal pancreas and it is highly correlated with reduced survival. We created stable KO's of PDCD10 in two PDAC lines, PaTu 8902 (SMAD4 +/+) and PaTu 8988t (SMAD4 -/-), and found that KO lines are more sensitive to 5-FU and Gemcitabine treatment than their wild-type counterparts. Performing viability and wound closure assays we further found that PDCD10 promotes cell survival and proliferation by enhancing specifically the mitogenic functions of TGF-β. The molecular mechanism underlying this effect was further investigated using Western blots and with primary organoid lines derived from patient PDAC tissue samples. The data imply that PDCD10 mediates an increase in p-ERK through a non-SMAD4 pathway, leading to EMT promotion. Furthermore, PDCD10 facilitates deactivation of RB via a SMAD4-dependent pathway, thereby counter-acting the anti-proliferative actions of TGF-β. By performing proximity ligation assays (PLA) we found that PDCD10 associates with the kinase MST4, translocates it intracellularly and thereby facilitates phosphorylations of RB and ERK1/2. Our study indicates that PDCD10 promotes the proliferative function and EMT induction of TGF-β in pancreatic cancer cells. Therefore, targeting PDCD10 in PDAC patients could represent a promising new strategy to optimize TGF-β targeted therapies.</p>\",\"PeriodicalId\":10475,\"journal\":{\"name\":\"Clinical science\",\"volume\":\" \",\"pages\":\"1111-1129\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20240450\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20240450","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
PDCD10 promotes the tumor-supporting functions of TGF-β in pancreatic cancer.
The progression of pancreatic ductal adenocarcinoma (PDAC) is significantly affected by transforming growth factor (TGF)-β but targeting TGF-β can also compromize physiological effects in patients. Our study examined the functions of the ubiquitously expressed protein, PDCD10, as a modulator of TGF-β signaling in PDAC. Using in silico analyses we found that in patient samples, PDCD10 is significantly higher expressed in PDAC tumor tissue compared with normal pancreas and it is highly correlated with reduced survival. We created stable KO's of PDCD10 in two PDAC lines, PaTu 8902 (SMAD4 +/+) and PaTu 8988t (SMAD4 -/-), and found that KO lines are more sensitive to 5-FU and Gemcitabine treatment than their wild-type counterparts. Performing viability and wound closure assays we further found that PDCD10 promotes cell survival and proliferation by enhancing specifically the mitogenic functions of TGF-β. The molecular mechanism underlying this effect was further investigated using Western blots and with primary organoid lines derived from patient PDAC tissue samples. The data imply that PDCD10 mediates an increase in p-ERK through a non-SMAD4 pathway, leading to EMT promotion. Furthermore, PDCD10 facilitates deactivation of RB via a SMAD4-dependent pathway, thereby counter-acting the anti-proliferative actions of TGF-β. By performing proximity ligation assays (PLA) we found that PDCD10 associates with the kinase MST4, translocates it intracellularly and thereby facilitates phosphorylations of RB and ERK1/2. Our study indicates that PDCD10 promotes the proliferative function and EMT induction of TGF-β in pancreatic cancer cells. Therefore, targeting PDCD10 in PDAC patients could represent a promising new strategy to optimize TGF-β targeted therapies.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.