TianCheng Xu, Jing Wen, Lei Wang, YueYing Huang, ZiJing Zhu, Qian Zhu, Yi Fang, ChengBiao Yang, YouBing Xia
{"title":"针灸适应症知识库:基于 ACUBERT 的经络实体识别与分类。","authors":"TianCheng Xu, Jing Wen, Lei Wang, YueYing Huang, ZiJing Zhu, Qian Zhu, Yi Fang, ChengBiao Yang, YouBing Xia","doi":"10.1093/database/baae083","DOIUrl":null,"url":null,"abstract":"<p><p>In acupuncture diagnosis and treatment, non-quantitative clinical descriptions have limited the development of standardized treatment methods. This study explores the effectiveness and the reasons for discrepancies in the entity recognition and classification of meridians in acupuncture indication using the Acupuncture Bidirectional Encoder Representations from Transformers (ACUBERT) model. During the research process, we selected 54 593 different entities from 82 acupuncture medical books as the pretraining corpus for medical literature, conducting classification research on Chinese medical literature using the BERT model. Additionally, we employed the support vector machine and Random Forest models as comparative benchmarks and optimized them through parameter tuning, ultimately leading to the development of the ACUBERT model. The results show that the ACUBERT model outperforms other baseline models in classification effectiveness, achieving the best performance at Epoch = 5. The model's \"precision,\" \"recall,\" and F1 scores reached above 0.8. Moreover, our study has a unique feature: it trains the meridian differentiation model based on the eight principles of differentiation and zang-fu differentiation as foundational labels. It establishes an acupuncture-indication knowledge base (ACU-IKD) and ACUBERT model with traditional Chinese medicine characteristics. In summary, the ACUBERT model significantly enhances the classification effectiveness of meridian attribution in the acupuncture indication database and also demonstrates the classification advantages of deep learning methods based on BERT in multi-category, large-scale training sets. Database URL: http://acuai.njucm.edu.cn:8081/#/user/login?tenantUrl=default.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acupuncture indication knowledge bases: meridian entity recognition and classification based on ACUBERT.\",\"authors\":\"TianCheng Xu, Jing Wen, Lei Wang, YueYing Huang, ZiJing Zhu, Qian Zhu, Yi Fang, ChengBiao Yang, YouBing Xia\",\"doi\":\"10.1093/database/baae083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In acupuncture diagnosis and treatment, non-quantitative clinical descriptions have limited the development of standardized treatment methods. This study explores the effectiveness and the reasons for discrepancies in the entity recognition and classification of meridians in acupuncture indication using the Acupuncture Bidirectional Encoder Representations from Transformers (ACUBERT) model. During the research process, we selected 54 593 different entities from 82 acupuncture medical books as the pretraining corpus for medical literature, conducting classification research on Chinese medical literature using the BERT model. Additionally, we employed the support vector machine and Random Forest models as comparative benchmarks and optimized them through parameter tuning, ultimately leading to the development of the ACUBERT model. The results show that the ACUBERT model outperforms other baseline models in classification effectiveness, achieving the best performance at Epoch = 5. The model's \\\"precision,\\\" \\\"recall,\\\" and F1 scores reached above 0.8. Moreover, our study has a unique feature: it trains the meridian differentiation model based on the eight principles of differentiation and zang-fu differentiation as foundational labels. It establishes an acupuncture-indication knowledge base (ACU-IKD) and ACUBERT model with traditional Chinese medicine characteristics. In summary, the ACUBERT model significantly enhances the classification effectiveness of meridian attribution in the acupuncture indication database and also demonstrates the classification advantages of deep learning methods based on BERT in multi-category, large-scale training sets. Database URL: http://acuai.njucm.edu.cn:8081/#/user/login?tenantUrl=default.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae083\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae083","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Acupuncture indication knowledge bases: meridian entity recognition and classification based on ACUBERT.
In acupuncture diagnosis and treatment, non-quantitative clinical descriptions have limited the development of standardized treatment methods. This study explores the effectiveness and the reasons for discrepancies in the entity recognition and classification of meridians in acupuncture indication using the Acupuncture Bidirectional Encoder Representations from Transformers (ACUBERT) model. During the research process, we selected 54 593 different entities from 82 acupuncture medical books as the pretraining corpus for medical literature, conducting classification research on Chinese medical literature using the BERT model. Additionally, we employed the support vector machine and Random Forest models as comparative benchmarks and optimized them through parameter tuning, ultimately leading to the development of the ACUBERT model. The results show that the ACUBERT model outperforms other baseline models in classification effectiveness, achieving the best performance at Epoch = 5. The model's "precision," "recall," and F1 scores reached above 0.8. Moreover, our study has a unique feature: it trains the meridian differentiation model based on the eight principles of differentiation and zang-fu differentiation as foundational labels. It establishes an acupuncture-indication knowledge base (ACU-IKD) and ACUBERT model with traditional Chinese medicine characteristics. In summary, the ACUBERT model significantly enhances the classification effectiveness of meridian attribution in the acupuncture indication database and also demonstrates the classification advantages of deep learning methods based on BERT in multi-category, large-scale training sets. Database URL: http://acuai.njucm.edu.cn:8081/#/user/login?tenantUrl=default.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.