Diego Ferreira Gomes, Hevelyn Plácido Brito, Julia Gomes do Vale, Thandy Júnior da Silva Pinto, Raquel Aparecida Moreira, Odete Rocha
{"title":"分离金属和混合金属对亚马孙本地鸵鸟的毒性及生态风险评估","authors":"Diego Ferreira Gomes, Hevelyn Plácido Brito, Julia Gomes do Vale, Thandy Júnior da Silva Pinto, Raquel Aparecida Moreira, Odete Rocha","doi":"10.1007/s10646-024-02800-9","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO<sub>4</sub>; ZnCl<sub>2</sub>; CdCl<sub>2</sub> and HgCl<sub>2</sub>). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1074-1085"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity of isolated and mixed metals to a native Amazonian ostracod and ecological risk assessment.\",\"authors\":\"Diego Ferreira Gomes, Hevelyn Plácido Brito, Julia Gomes do Vale, Thandy Júnior da Silva Pinto, Raquel Aparecida Moreira, Odete Rocha\",\"doi\":\"10.1007/s10646-024-02800-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO<sub>4</sub>; ZnCl<sub>2</sub>; CdCl<sub>2</sub> and HgCl<sub>2</sub>). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"1074-1085\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02800-9\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02800-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Toxicity of isolated and mixed metals to a native Amazonian ostracod and ecological risk assessment.
In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO4; ZnCl2; CdCl2 and HgCl2). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.