Xiangyue Hu , Chunxiao Dong , Dulei Zou , Chao Wei , Yani Wang , Zongren Li , Haoyun Duan , Zongyi Li
{"title":"将人类胚胎干细胞定向分化为结膜上皮细胞。","authors":"Xiangyue Hu , Chunxiao Dong , Dulei Zou , Chao Wei , Yani Wang , Zongren Li , Haoyun Duan , Zongyi Li","doi":"10.1016/j.yexcr.2024.114227","DOIUrl":null,"url":null,"abstract":"<div><p>Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114227"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed differentiation of human embryonic stem cells into conjunctival epithelial cells\",\"authors\":\"Xiangyue Hu , Chunxiao Dong , Dulei Zou , Chao Wei , Yani Wang , Zongren Li , Haoyun Duan , Zongyi Li\",\"doi\":\"10.1016/j.yexcr.2024.114227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114227\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Directed differentiation of human embryonic stem cells into conjunctival epithelial cells
Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.