{"title":"瘦素和胰岛素与PIK3CA突变协同作用,增强甲状腺癌中PD-L1介导的免疫抑制。","authors":"Kainan Wu , Yuerong Chen , Runsheng Guo , Qingtan Zeng , Yue Yu","doi":"10.1016/j.yexcr.2024.114229","DOIUrl":null,"url":null,"abstract":"<div><p>The incidence of thyroid cancer keeps rising and obesity emerges as an important risk factor for thyroid cancer, but the underlying mechanism is far from clear. Here, we hypothesize that leptin and insulin, two hormones closely related to obesity, may contribute to the pathogenesis of thyroid cancer. By using a combination of assays like CRISPR KO, cancer cell-T cell co-culture, ApoLive-Glo™ multiplex assay and syngeneic mouse model, we show that PD-L1 protein levels are increased dose-dependently by leptin or insulin in multiple thyroid cancer cell lines. Leptin and insulin converge to activate the PI3K-AKT pathway to enhance PD-L1 expression and activity. In addition, we use CRISPR KO to generate human thyroid cancer cells expressing WT PIK3CA or PIK3CA-E545K mutant. PIK3CA- E545K mutation makes the thyroid cancer cells to produce more PD-L1 protein upon leptin or insulin treatment. Thus, leptin and insulin synergize with PIK3CA mutation to enhance PD-L1 expression. Dual blockade of leptin and insulin signaling pathways reduces tumor size in a syngeneic mouse model. Our study suggests that understanding the interaction between genetic mutation and obesity is crucial for comprehensively assessing thyroid cancer risk and developing effective treatment strategies.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114229"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leptin and insulin synergize with PIK3CA mutation to enhance PD-L1 mediated immunosuppression in thyroid cancer\",\"authors\":\"Kainan Wu , Yuerong Chen , Runsheng Guo , Qingtan Zeng , Yue Yu\",\"doi\":\"10.1016/j.yexcr.2024.114229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The incidence of thyroid cancer keeps rising and obesity emerges as an important risk factor for thyroid cancer, but the underlying mechanism is far from clear. Here, we hypothesize that leptin and insulin, two hormones closely related to obesity, may contribute to the pathogenesis of thyroid cancer. By using a combination of assays like CRISPR KO, cancer cell-T cell co-culture, ApoLive-Glo™ multiplex assay and syngeneic mouse model, we show that PD-L1 protein levels are increased dose-dependently by leptin or insulin in multiple thyroid cancer cell lines. Leptin and insulin converge to activate the PI3K-AKT pathway to enhance PD-L1 expression and activity. In addition, we use CRISPR KO to generate human thyroid cancer cells expressing WT PIK3CA or PIK3CA-E545K mutant. PIK3CA- E545K mutation makes the thyroid cancer cells to produce more PD-L1 protein upon leptin or insulin treatment. Thus, leptin and insulin synergize with PIK3CA mutation to enhance PD-L1 expression. Dual blockade of leptin and insulin signaling pathways reduces tumor size in a syngeneic mouse model. Our study suggests that understanding the interaction between genetic mutation and obesity is crucial for comprehensively assessing thyroid cancer risk and developing effective treatment strategies.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114229\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003203\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Leptin and insulin synergize with PIK3CA mutation to enhance PD-L1 mediated immunosuppression in thyroid cancer
The incidence of thyroid cancer keeps rising and obesity emerges as an important risk factor for thyroid cancer, but the underlying mechanism is far from clear. Here, we hypothesize that leptin and insulin, two hormones closely related to obesity, may contribute to the pathogenesis of thyroid cancer. By using a combination of assays like CRISPR KO, cancer cell-T cell co-culture, ApoLive-Glo™ multiplex assay and syngeneic mouse model, we show that PD-L1 protein levels are increased dose-dependently by leptin or insulin in multiple thyroid cancer cell lines. Leptin and insulin converge to activate the PI3K-AKT pathway to enhance PD-L1 expression and activity. In addition, we use CRISPR KO to generate human thyroid cancer cells expressing WT PIK3CA or PIK3CA-E545K mutant. PIK3CA- E545K mutation makes the thyroid cancer cells to produce more PD-L1 protein upon leptin or insulin treatment. Thus, leptin and insulin synergize with PIK3CA mutation to enhance PD-L1 expression. Dual blockade of leptin and insulin signaling pathways reduces tumor size in a syngeneic mouse model. Our study suggests that understanding the interaction between genetic mutation and obesity is crucial for comprehensively assessing thyroid cancer risk and developing effective treatment strategies.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.