Alec Singer, Milo Wolf, Leonardo Generoso, Elizabeth Arias, Kenneth Delcastillo, Edwin Echevarria, Amaris Martinez, Patroklos Androulakis Korakakis, Martin C Refalo, Paul A Swinton, Brad J Schoenfeld
{"title":"让肌肉休息一下:利用贝叶斯荟萃分析法对组间休息间隔时间对肌肉肥大的影响进行系统回顾。","authors":"Alec Singer, Milo Wolf, Leonardo Generoso, Elizabeth Arias, Kenneth Delcastillo, Edwin Echevarria, Amaris Martinez, Patroklos Androulakis Korakakis, Martin C Refalo, Paul A Swinton, Brad J Schoenfeld","doi":"10.3389/fspor.2024.1429789","DOIUrl":null,"url":null,"abstract":"<p><p>We systematically searched the literature for studies with a randomized design that compared different inter-set rest interval durations for estimates of pre-/post-study changes in lean/muscle mass in healthy adults while controlling all other training variables. Bayesian meta-analyses on non-controlled effect sizes using hierarchical models of all 19 measurements (thigh: 10; arm: 6; whole body: 3) from 9 studies meeting inclusion criteria analyses showed substantial overlap of standardized mean differences across the different inter-set rest periods [binary: short: 0.48 (95%CrI: 0.19-0.81), longer: 0.56 (95%CrI: 0.24-0.86); Four categories: short: 0.47 (95%CrI: 0.19-0.80), intermediate: 0.65 (95%CrI: 0.18-1.1), long: 0.55 (95%CrI: 0.15-0.90), very long: 0.50 (95%CrI: 0.14-0.89)], with substantial heterogeneity in results. Univariate and multivariate pairwise meta-analyses of controlled binary (short vs. longer) effect sizes showed similar results for the arm and thigh with central estimates tending to favor longer rest periods [arm: 0.13 (95%CrI: -0.27 to 0.51); thigh: 0.17 (95%CrI: -0.13 to 0.43)]. In contrast, central estimates closer to zero but marginally favoring shorter rest periods were estimated for the whole body [whole body: -0.08 (95%CrI: -0.45 to 0.29)]. Subanalysis of set end-point data indicated that training to failure or stopping short of failure did not meaningfully influence the interaction between rest interval duration and muscle hypertrophy. In conclusion, results suggest a small hypertrophic benefit to employing inter-set rest interval durations >60 s, perhaps mediated by reductions in volume load. However, our analysis did not detect appreciable differences in hypertrophy when resting >90 s between sets, consistent with evidence that detrimental effects on volume load tend to plateau beyond this time-frame. <b>Systematic Review Registration:</b> OSF, https://doi.org/10.17605/OSF.IO/YWEVC.</p>","PeriodicalId":12716,"journal":{"name":"Frontiers in Sports and Active Living","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349676/pdf/","citationCount":"0","resultStr":"{\"title\":\"Give it a rest: a systematic review with Bayesian meta-analysis on the effect of inter-set rest interval duration on muscle hypertrophy.\",\"authors\":\"Alec Singer, Milo Wolf, Leonardo Generoso, Elizabeth Arias, Kenneth Delcastillo, Edwin Echevarria, Amaris Martinez, Patroklos Androulakis Korakakis, Martin C Refalo, Paul A Swinton, Brad J Schoenfeld\",\"doi\":\"10.3389/fspor.2024.1429789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We systematically searched the literature for studies with a randomized design that compared different inter-set rest interval durations for estimates of pre-/post-study changes in lean/muscle mass in healthy adults while controlling all other training variables. Bayesian meta-analyses on non-controlled effect sizes using hierarchical models of all 19 measurements (thigh: 10; arm: 6; whole body: 3) from 9 studies meeting inclusion criteria analyses showed substantial overlap of standardized mean differences across the different inter-set rest periods [binary: short: 0.48 (95%CrI: 0.19-0.81), longer: 0.56 (95%CrI: 0.24-0.86); Four categories: short: 0.47 (95%CrI: 0.19-0.80), intermediate: 0.65 (95%CrI: 0.18-1.1), long: 0.55 (95%CrI: 0.15-0.90), very long: 0.50 (95%CrI: 0.14-0.89)], with substantial heterogeneity in results. Univariate and multivariate pairwise meta-analyses of controlled binary (short vs. longer) effect sizes showed similar results for the arm and thigh with central estimates tending to favor longer rest periods [arm: 0.13 (95%CrI: -0.27 to 0.51); thigh: 0.17 (95%CrI: -0.13 to 0.43)]. In contrast, central estimates closer to zero but marginally favoring shorter rest periods were estimated for the whole body [whole body: -0.08 (95%CrI: -0.45 to 0.29)]. Subanalysis of set end-point data indicated that training to failure or stopping short of failure did not meaningfully influence the interaction between rest interval duration and muscle hypertrophy. In conclusion, results suggest a small hypertrophic benefit to employing inter-set rest interval durations >60 s, perhaps mediated by reductions in volume load. However, our analysis did not detect appreciable differences in hypertrophy when resting >90 s between sets, consistent with evidence that detrimental effects on volume load tend to plateau beyond this time-frame. <b>Systematic Review Registration:</b> OSF, https://doi.org/10.17605/OSF.IO/YWEVC.</p>\",\"PeriodicalId\":12716,\"journal\":{\"name\":\"Frontiers in Sports and Active Living\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Sports and Active Living\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspor.2024.1429789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1429789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Give it a rest: a systematic review with Bayesian meta-analysis on the effect of inter-set rest interval duration on muscle hypertrophy.
We systematically searched the literature for studies with a randomized design that compared different inter-set rest interval durations for estimates of pre-/post-study changes in lean/muscle mass in healthy adults while controlling all other training variables. Bayesian meta-analyses on non-controlled effect sizes using hierarchical models of all 19 measurements (thigh: 10; arm: 6; whole body: 3) from 9 studies meeting inclusion criteria analyses showed substantial overlap of standardized mean differences across the different inter-set rest periods [binary: short: 0.48 (95%CrI: 0.19-0.81), longer: 0.56 (95%CrI: 0.24-0.86); Four categories: short: 0.47 (95%CrI: 0.19-0.80), intermediate: 0.65 (95%CrI: 0.18-1.1), long: 0.55 (95%CrI: 0.15-0.90), very long: 0.50 (95%CrI: 0.14-0.89)], with substantial heterogeneity in results. Univariate and multivariate pairwise meta-analyses of controlled binary (short vs. longer) effect sizes showed similar results for the arm and thigh with central estimates tending to favor longer rest periods [arm: 0.13 (95%CrI: -0.27 to 0.51); thigh: 0.17 (95%CrI: -0.13 to 0.43)]. In contrast, central estimates closer to zero but marginally favoring shorter rest periods were estimated for the whole body [whole body: -0.08 (95%CrI: -0.45 to 0.29)]. Subanalysis of set end-point data indicated that training to failure or stopping short of failure did not meaningfully influence the interaction between rest interval duration and muscle hypertrophy. In conclusion, results suggest a small hypertrophic benefit to employing inter-set rest interval durations >60 s, perhaps mediated by reductions in volume load. However, our analysis did not detect appreciable differences in hypertrophy when resting >90 s between sets, consistent with evidence that detrimental effects on volume load tend to plateau beyond this time-frame. Systematic Review Registration: OSF, https://doi.org/10.17605/OSF.IO/YWEVC.